Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-14T14:32:05.994Z Has data issue: false hasContentIssue false

Glyphosate-resistant Hairy Fleabane (Conyza bonariensis) in Spain

Published online by Cambridge University Press:  20 January 2017

Jose M. Urbano*
Affiliation:
Departmento C., Agroforestales, Universidad de Sevilla, 41013 Sevilla, Spain
Ana Borrego
Affiliation:
Departmento C., Agroforestales, Universidad de Sevilla, 41013 Sevilla, Spain
Vanessa Torres
Affiliation:
Departmento C., Agroforestales, Universidad de Sevilla, 41013 Sevilla, Spain
Juan M. Leon
Affiliation:
Departmento C., Agroforestales, Universidad de Sevilla, 41013 Sevilla, Spain
Cristobal Jimenez
Affiliation:
Departmento C., Agroforestales, Universidad de Sevilla, 41013 Sevilla, Spain
Giovanni Dinelli
Affiliation:
Departmento di Scienze e Tecnologie Agroambientali, Universitá di Bologna, 40127 Bologna, Italy
Jasper Barnes
Affiliation:
Syngenta Crop Protection, Basel, Switzerland
*
Corresponding author's E-mail: [email protected]

Abstract

Forty-three Spanish populations of hairy fleabane, sampled from perennial crop locations, were studied under controlled and field conditions to confirm and characterize glyphosate resistance. In the initial screening, under controlled conditions, significant differences in glyphosate response between locations and among plant progenies within location were observed. From the initial screening, six populations (five potentially resistant [R] and one susceptible [S]) were selected, and a dose–response experiment was conducted to determine the resistance factor. The resistance factor was close to 10× for the most resistant population. In addition, the glyphosate response of R and S populations was dependant on phenological stages: the glyphosate rate required for control increased as a function of plant age. Finally, the resistance was confirmed with field trials conducted in five locations (one S and four R previously studied under controlled conditions). The field trials were also used to find alternative solutions for Spanish farmers to control resistant hairy fleabane populations.

Type
Research
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bastida, F., Muriel, A. J., and Menéndez, J. 2005. La flora arvense de los cítricos en la Provincia de Huelva. Pages 305315. in Menéndez, J., Bastida, F., Fernández-Quintanilla, C., González, J.L., Recasens, J., Royuela, M., Verdú, A. and Zaragoza, C. eds. Malherbología Ibérica y Magrebí: soluciones comunes a problemas comunes. Huelva, España Universidad de Huelva [In Spanish].Google Scholar
Baylis, A. D. 2000. Why glyphosate is a global herbicide: strengths, weaknesses and prospects. Pest Manag. Sci. 56:299308.Google Scholar
Bradshaw, L. D., Padgette, S. R., Kimball, S. L., and Wells, B. H. 1997. Perspectives on glyphosate resistance. Weed Technol. 11:189198.Google Scholar
Carretero, J. L. 2004. Flora Arvense Española: Las Malas Hierbas de los Cultivos Españoles. Valencia, España Phytoma España. 754. [In Spanish].Google Scholar
Dauer, J. and Mortensen, D. 2005. Management implications of long-distance wind dispersal of Conyza canadensis. Proceedings of the 13th EWRS Symposium. Bari, Italy European Weed Research Society.Google Scholar
Dill, G. M. 2005. Glyphosate-resistant crops: history, status and future. Pest Manag. Sci. 61:219224.Google Scholar
Dinelli, G., Marotti, I., Bonetti, A., Minelli, M., Catizone, P., and Barnes, J. 2006. Physiological and molecular insight on the mechanisms of resistance to glyphosate in Conyza canadensis (L.) Cronq. biotypes. Pestic. Biochem. Physiol. 86:3041.CrossRefGoogle Scholar
Feng, P. C. C., Tran, M., Chiu, T., Sammons, R. D., Heck, G. R., and Jacob, C. A. 2004. Investigations into glyphosate-resistant horseweed (Conyza canadensis): retention, uptake, translocation and metabolism. Weed Sci. 52:498505.Google Scholar
Heap, I. 2006. International Survey of Herbicide Resistant Weeds. http://www.weedscience.com. Accessed: March 5, 2006.Google Scholar
Lee, L. J. and Ngim, J. 2000. A first report of glyphosate-resistant goosegrass [Eleusine indica (L) Gaertn] in Malaysia. Pest Manag. Sci. 56:336339.Google Scholar
Main, C. L., Mueller, T. C., Hayes, R. M., and Wilkerson, J. B. 2004. Response of selected horseweed [Conyza canadensis (L.) Cronq.] populations to glyphosate. J. Agric. Food Chem. 52:879883.CrossRefGoogle ScholarPubMed
Neve, P., Diggle, A. J., Smith, F. P., and Powles, S. B. 2003. Simulating evolution of glyphosate resistance in Lolium rigidum, II: past, present and future glyphosate use in Australia cropping. Weed Res. 43:418427.CrossRefGoogle Scholar
Owen, M. D. K. and Zelaya, I. A. 2005. Herbicide-resistant crops and weed resistance to herbicides. Pest Manag. Sci. 61:301311.Google Scholar
Padgette, S. R., Re, D. B., Barry, G. F., Eichholz, D. E., Delannay, X., Fuchs, R. L., Kishore, G. M., and Fraley, R. T. 1996. New weed control opportunities: development of soybeans with a Roundup Ready gene. Pages 5389. in Duke, S.O. ed. Herbicide Resistant Crops: Agricultural, Economic, Environmental, Regulatory, and Technological Aspects. Boca Raton, FL: CRC.Google Scholar
Potter, C. 1952. An improved laboratory apparatus for applying direct sprays and surface films, with data on the electrostatic charge on atomized spray fluids. Ann. Appl. Biol. 39 (1):129.Google Scholar
Powles, S. B. 2003. My view. Weed Sci. 51:471.Google Scholar
Powles, S. B., Lorraine-Colwill, D. F., Dellow, J. J., and Preston, C. 1998. Evolved resistance to glyphosate in rigid ryegrass (Lolium rigidum) in Australia. Weed Sci. 46:604607.CrossRefGoogle Scholar
Powles, S. B. and Preston, C. 2006. Evolved glyphosate resistance in plants: biochemical and genetic basis of resistance. Weed Technol. 20:282289.Google Scholar
Prado, Rde, Dominguez, C., and Tena, M. 1989. Characterization of triazine-resistant biotypes of common lambsquarters (Chenopodium album), hairy fleabane (Conyza bonariensis) and yellow foxtail (Setaria glauca) found in Spain. Weed Sci. 37:14.Google Scholar
Pratley, J. E., Urwin, N. A. R., Stanton, R. A., Baines, P. R., Broster, J. C., Cullis, K., Schafer, D. E., Bohn, J. A., and Krueger, R. W. 1999. Resistance to glyphosate in Lolium rigidum: I, bioevaluation. Weed Sci. 47:405411.Google Scholar
Prieur-Richard, A. H., Lavorel, S., Grigulis, K., and Dos-Santos, A. 2000. Plant community diversity and invasibility by exotics: invasion of Mediterranean old fields by Conyza bonariensis and Conyza canadensis . Ecol. Lett. 3:412422.Google Scholar
Saavedra, M. M. and Pastor, M. 1996. Weed populations in olive groves under non-tillage and conditions of rapid degradation of simazine. Weed Res. 36 (1):114.Google Scholar
Saavedra, M. M. and Pastor, M. 2002. Sistemas de Cultivo en Olivar (Manejo de Malas Hierbas y Herbicidas). Madrid, España Editorial Agrícola Española. 429.Google Scholar
Seefeldt, S. S., Jensen, J. E., and Fuerst, P. 1995. Log-logistic analysis of herbicide dose–response relationships. Weed Technol. 9:218227.Google Scholar
VanGessel, M. 2001. Glyphosate-resistant horseweed from Delaware. Weed Sci. 49:705–703.Google Scholar
Woodburn, A. 2000. Glyphosate: production, pricing and use worldwide. Pest Manag. Sci. 56:309312.Google Scholar
Zelaya, I. A., Owen, M. D. K., and VanGessel, M. J. 2004. Inheritance of evolved glyphosate resistance in Conyza canadensis (L.) Cronq. Theor. Appl. Genet. 110:5870.CrossRefGoogle ScholarPubMed