Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T00:04:13.088Z Has data issue: false hasContentIssue false

Field Dissipation of Atrazine and Metribuzin in Organic Soils in Florida

Published online by Cambridge University Press:  20 January 2017

Dennis C. Odero*
Affiliation:
Everglades Research and Education Center, University of Florida, Belle Glade, FL 33430
Dale L. Shaner
Affiliation:
Water Management Research, Agricultural Research Service, USDA, Fort Collins, CO 80526
*
Corresponding author's E-mail: [email protected].

Abstract

Sugarcane growers have observed reduced residual activity of atrazine on organic soils in the Everglades Agricultural Area (EAA) of south Florida. Field studies were conducted between 2011 and 2012 to determine the rate of dissipation of atrazine at 2.24, 4.48, and 8.96 kg ha−1 and metribuzin at 0.56, 1.12, and 2.24 kg ha−1 in the top 10 cm of soil in sugarcane fields in the EAA. The bioavailable fraction of atrazine dissipated more rapidly than the total amount of atrazine in the soil. Half-lives of the total and bioavailable fraction of atrazine ranged between 3.9 to 12.1 d and 1.0 to 7.5 d, respectively. Metribuzin dissipated much more slowly than atrazine on organic soils. Similarly, dissipation of the bioavailable fraction of metribuzin was more rapid than was the dissipation of the total amount of metribuzin in the soil. Half-lives of the total and bioavailable fraction of metribuzin ranged between 16.2 and 24.8 d and 6.0 and 14.3 d, respectively. These results indicate that enhanced atrazine degradation occurs on organic soils under field conditions in the EAA, resulting in shorter residual atrazine activity. This implies that metribuzin is a better option for weed control in sugarcane grown on organic soils of the EAA exhibiting enhanced atrazine degradation.

Productores de caña de azúcar han observado una actividad residual reducida de atrazine en suelos orgánicos en el Área Agrícola Everglades (EAA) en el sur de Florida. Se realizaron estudios de campo entre 2011 y 2012 para determinar la tasa de disipación de atrazine a 2.24, 4.48, y 8.96 kg ha−1 y metribuzin a 0.56, 1.12, y 2.24 kg ha−1 en los 10 cm superiores de suelo en campos de caña de azúcar en el EAA. La fracción biodisponible de atrazine se disipó más rápidamente que el total de atrazine en el suelo. La vida media de las fracciones total y biodisponible de atrazine variaron entre 3.9 y 12.1 d y 1.0 y 7.5 d, respectivamente. Metribuzin se disipó mucho más lentamente que atrazine en suelos orgánicos. Similarmente, la disipación de la fracción biodisponible de metribuzin fue más rápida que lo que fue la disipación de la cantidad total de metribuzin en el suelo. La vida media de las fracciones total y biodisponible de metribuzin varió entre 16.2 y 24.8 d y 6.0 y 14.3 d, respectivamente. Estos resultados indican que la degradación acelerada de atrazine ocurre en suelos orgánicos bajo condiciones de campo en el EAA, lo que resulta en una actividad residual de atrazine más corta. Esto implica que metribuzin es una mejor opción para el control de malezas en caña de azúcar sembrada en suelos orgánicos del EAA que exhiben degradación acelerada de atrazine.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abdelhafid, R, Houot, S, Barriuso, E (2000) Dependence of atrazine degradation on C and N availability in adapted and non-adapted soils. Soil Biol Biochem 32:389401 Google Scholar
Bardgett, RD, Leemans, DK (1995) The short-term effects of cessation of fertiliser applications, liming, and grazing on microbial biomass and activity in a reseeded upland grassland soil. Biol Fertil Soils 19:148154 CrossRefGoogle Scholar
Barriuso, E, Houot, S (1996) Rapid mineralization of the s-triazine ring of atrazine in soils in relation to soil management. Soil Biol Biochem 28:13411348 Google Scholar
Briceňo, G, Jorquera, MA, Demanet, R, Mora, ML, Durán, N, Palma, G (2010) Effect of cow slurry amendment on atrazine dissipation and bacterial community structure in an agricultural Andisol. Sci Total Environ 408:28332839 Google Scholar
de Souza, M, Sadowsky, MJ, Wackett, LP (1996) Atrazine chlorohydrolase from Pseudomonas sp. strain ADP: gene sequence, enzyme purification, and protein characterization. J Bacteriol 178:48944900 Google Scholar
Engelhardt, G, Wallnöfer, PR (1978) Microbial transformation of the triazinone herbicide metamitron to desaminometamitron. Chemosphere 7:463466 Google Scholar
Engelhardt, G, Ziegler, W, Wallnöfer, PR, Jarczyk, HJ, Oehlmann, L (1982) Degradation of the triazinone herbicide metamitron by Arthrobacter sp. DSM 20369. J Agric Food Chem 30:278282 Google Scholar
Goux, S, Shapir, N, El Fantroussi, S, Lelong, S, Agathos, SN, Pussemier, L (2003) Long-term maintenance of rapid atrazine degradation in soils inoculated with atrazine degraders. Water Air Soil Pollut 3:131142 Google Scholar
Hang, S, Barriuso, E, Houot, S (2003) Behavior of 14C-atrazine in Argentinean topsoils under different cropping managements. J Environ Qual 32:22162222 Google Scholar
Houot, S, Topp, E, Yassir, A, Soulas, G (2000) Dependence of accelerated degradation of atrazine on soil pH in French and Canadian soils. Soil Biol Biochem 32:615625 Google Scholar
Krutz, LJ, Shaner, DL, Accinelli, C, Zablotowicz, RM, Henry, WB (2008) Atrazine dissipation in s-triazine-adapted and non-adapted soil from Colorado and Mississippi: implications of enhanced degradation on atrazine fate and transport parameters. J Environ Qual 37:848857 Google Scholar
Krutz, LJ, Shaner, DL, Weaver, MA, Webb, RMT, Zablotowicz, RM, Reddy, KN, Huang, Y, Thomson, SJ (2010) Agronomic and environmental implications of enhanced s-triazine degradation. Pest Manag Sci 66:461481 Google Scholar
Krutz, LJ, Zablotowicz, RM, Reddy, KN, Koger, CH III, Weaver, MA (2007) Enhanced degradation of atrazine under field conditions correlates with a loss of weed control in the glasshouse. Pest Manag Sci 63:2331 Google Scholar
Majumdar, K, Singh, N (2007) Effect of soil amendments on sorption and mobility of metribuzin in soils. Chemosphere 66:630637 Google Scholar
Mandelbaum, RT, Allan, DL, Wackett, LP (1995) Isolation and characterization of a Pseudomonas sp. that mineralizes the s-triazine herbicide atrazine. Appl Environ Microbiol 61:14511457 Google Scholar
Maqueda, C, Villaverde, J, Sopeńa, F, Undabeytia, T, Morillo, E (2009) Effects of soil characteristics on metribuzin dissipation using clay-gel-based formulations. J Agric Food Chem 57:32733278 Google Scholar
Moorman, TB, Harper, SS (1989) Transformation and mineralization of metribuzin in surface and subsurface horizons of a Mississippi delta soil. J Environ Qual 18:302306 CrossRefGoogle Scholar
Mueller, TC, Steckel, LE, Radosevich, M (2010) Effect of soil pH and previous atrazine use history on atrazine degradation in a Tennessee field soil. Weed Sci 58:478483 CrossRefGoogle Scholar
Odero, DC, Dusky, JA (2010) Weed Management in Sugarcane. Florida Cooperative Extension, Institute of Food and Agricultural Sciences, University of Florida SS-AGR-09. http://edis.ifas.ufl.edu/wg004. Accessed August 28, 2013.Google Scholar
Ostrofsky, EB, Traina, SJ, Tuovinen, OH (1997) Variation in atrazine mineralization rates in relation to agricultural management practice. J Environ Qual 26:647657 Google Scholar
Popov, VH, Cornish, PS, Sultana, K, Morris, EC (2005) Atrazine degradation in soils: the role of microbial communities, atrazine application history, and soil carbon. Aust J Soil Res 43: 861871 Google Scholar
Pussemier, L, Goux, S, Vanderheyden, V, Debongnie, P, Tresinie, I, Foucart, G (1997) Rapid dissipation of atrazine in soils taken from various maize fields. Weed Res 37:171179 Google Scholar
Ritz, C, Streibig, JC (2005) Bioassay analysis using R. J Stat Sofw 12:122 Google Scholar
Savage, KE (1977) Metribuzin persistence in soil. Weed Sci 25:5559 Google Scholar
Schilling, R, Engelhardt, G, Wallnöfer, PR (1985) Degradation of the herbicide metribuzin (Sencor) by pure cultures of Cunninghamella echinulata Thaxter ATCC 38447. Chemosphere 14:267270 Google Scholar
Senseman, SA, ed (2007) Herbicide Handbook. 9th edn. Lawrence, KS: Weed Science Society of America. 458 pGoogle Scholar
Shaner, DL, Henry, WB (2007) Field history and dissipation of atrazine and metolachlor in Colorado. J Environ Qual 36:128134 CrossRefGoogle ScholarPubMed
Shaner, DL, Henry, WB, Krutz, LJ, Hanson, B (2007) Rapid assay for detecting enhanced atrazine degradation in soil. Weed Sci 55:528535 Google Scholar
Shaner, DL, Krutz, LJ, Henry, W, Hanson, BD, Poteet, MD, Rainbolt, CR (2010) Sugarcane soils exhibit enhanced atrazine degradation and cross adaptation to other s-triazines. J Am Soc Sugar Cane Technol 30:110 Google Scholar
Shapir, N, Mandelbaum, RT (1997) Atrazine degradation in subsurface soil by indigenous and introduced microorganisms. J Agric Food Chem 45:44814486 CrossRefGoogle Scholar
Shapir, N, Rosendahl, C, Johnson, G, Andreina, M, Sadowsky, MJ, Wackett, LP (2005) Substrate specificity and colorimetric assay for recombinant TrzN derived from Arthrobacter aurescens TC1. Appl Environ Microbiol 71:22142220 Google Scholar
Sharom, MS, Stephenson, GR (1976) Behavior and fate of metribuzin in eight Ontario soils. Weed Sci 24:153160 Google Scholar
Singh, BK, Walker, A, Morgan, JAW, Wright, D (2003) Role of soil pH in the development of enhanced biodegradation of fenamiphos. Appl Environ Microbiol 69:70357043 CrossRefGoogle ScholarPubMed
Smith, DT, Richard, EP Jr., Santo, LT (2008) Weed control in sugarcane and the role of triazine herbicides. Pages 185198 in LeBaron, HM, McFarland, J, Burnside, O, eds. The Triazine Herbicides 50 Years Revolutionizing Agriculture. San Diego: Elsevier. 584 pGoogle Scholar
Strong, LC, Rosendahl, C, Johnson, G, Sadowsky, MJ, Wackett, LP (2002) Arthrobacter aurescens TC1 metabolizes diverse s-triazine ring compounds. Appl Environ Microbiol 68:59735980 CrossRefGoogle ScholarPubMed
Topp, E, Mulbry, WM, Zhu, H, Nour, SM, Cuppels, D (2000) Characterization of s-triazine herbicide metabolism by a Nocardioides sp. isolated from agricultural soils. Appl Environ Microbiol 66:31343141 Google Scholar
Vanderheyden, V, Debongnie, P, Pussemier, L (1997) Accelerated degradation and mineralization of atrazine in surface and subsurface soil materials. Pestic Sci 49:237242 Google Scholar
Wackett, LP, Sadowsky, MJ, Martinez, B, Shapir, N (2002) Biodegradation of atrazine and related s-triazine compounds: from enzymes to field studies. Appl Microbiol Biotechnol 58:3945 CrossRefGoogle ScholarPubMed
Wakelin, SA, Macdonald, LM, Rogers, SL, Gregg, AL, Bolger, TP, Baldock, JA (2008) Habitat selective factors influencing the structural composition and functional capacity of microbial communities in agricultural soils. Soil Biol Biochem 40:803813 Google Scholar
Wauchope, RD, Buttler, TM, Hornsby, AG, Augustine-Bekcers, PW, Burt, JP (1992) The SCS/ARS/CES pesticide properties database for environmental decision making. Rev Environ Contam Toxicol 123:1155 Google ScholarPubMed
Wright, AL, Hanlon, EA (2009) Soil Structure in Everglades Agricultural Area Histosols: Effects of Carbon Sequestration and Subsidence. Gainesville, FL: Institute of Food and Agricultural Sciences, Florida Cooperative Extension Service, University of Florida, Electronic Data Information Source SL301Google Scholar
Yassir, A, Lagacherie, B, Houot, S, Soulas, G (1999) Microbial aspects of atrazine biodegradation in relation to history of soil treatment. Pestic Sci 55:799809 Google Scholar
Zablotowicz, RM, Weaver, MA, Locke, MA (2006) Microbial adaptation for accelerated atrazine mineralization/degradation in Mississippi Delta soils. Weed Sci 54:538547 CrossRefGoogle Scholar
Zelles, L, Stepper, K, Zsolnay, A (1990) The effect of lime on microbial activity in spruce (Picea abies L.) forests. Biol Fertil Soils 7882 Google Scholar