Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-18T07:09:54.210Z Has data issue: false hasContentIssue false

Evolved Glyphosate Resistance in Plants: Biochemical and Genetic Basis of Resistance

Published online by Cambridge University Press:  20 January 2017

Stephen B. Powles*
Affiliation:
Western Australian Herbicide Resistance Initiative, School of Plant Biology, University of Western Australia, Australia 6014
Christopher Preston
Affiliation:
CRC for Australian Weed Management and School of Agriculture and Wine, University of Adelaide, Glen Osmond, Australia 5064
*
Corresponding author's E-mail: [email protected]

Abstract

Resistance to the herbicide glyphosate is currently known in at least eight weed species from many countries. Some populations of goosegrass from Malaysia, rigid ryegrass from Australia, and Italian ryegrass from Chile exhibit target site–based resistance to glyphosate through changes at amino acid 106 of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene. Mutations change amino acid 106 from proline to either serine or threonine, conferring an EPSPS weakly resistant to glyphosate. The moderate level of resistance is sufficient for commercial failure of the herbicide to control these plants in the field. Conversely, a nontarget site resistance mechanism has been documented in glyphosate-resistant populations of horseweed and rigid ryegrass from the United States and Australia, respectively. In these resistant plants, there is reduced translocation of glyphosate to meristematic tissues. Both of these mechanisms are inherited as a single, nuclear gene trait. Although at present only two glyphosate-resistance mechanisms are known, it is likely that other mechanisms will become evident. The already very large and still increasing reliance on glyphosate in many parts of the world will inevitably result in more glyphosate-resistant weeds, placing the sustainability of this precious herbicide resource at risk.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Amrhein, N., Deus, B., Gehrke, P., and Steinrücken, H. C. 1980. The site of inhibition of the shikimate pathway by glyphosate, II: interference of glyphosate with chorismate formation in vivo and in vitro. Plant Physiol. 66:830834.CrossRefGoogle ScholarPubMed
Amhrein, N., Johanning, D., Schab, J., and Schulz, A. 1983. Biochemical basis for glyphosate-tolerance in a bacterium and a plant tissue culture. FEBS Lett. 157:191196.Google Scholar
Arnaud, L., Nurit, F., Ravanel, P., and Tissut, M. 1994. Distribution of glyphosate and its target enzyme inside wheat plants. Plant Physiol. 40:217223.Google Scholar
Baerson, S. R., Rodriguez, D. J., Tran, M., Feng, Y., Best, N. A., and Dill, G. M. 2002. Glyphosate-resistant goosegrass: identification of a mutation in the target enzyme 5-enolpyruvylshikimate-3-phosphate synthase. Plant Physiol. 129:12651275.Google Scholar
Bradshaw, L. D., Padgette, S. R., Kimball, S. L., and Wells, B. H. 1997. Perspectives on glyphosate resistance. Weed Technol. 11:189198.Google Scholar
Bromilow, R. H., Chamberlain, K., Tench, A. J., and Williams, R. H. 1993. Phloem translocation of strong acids—glyphosate, substituted phosphonic, and sulfonic acids—in Ricinus communis . Pestic. Sci. 37:3947.Google Scholar
Brown, A. C., Moss, S. R., Wilson, Z. A., and Field, L. M. 2003. An isoleucine to leucine substitution in the ACCase of Alopecurus myosuroides (black-grass) is associated with resistance to the herbicide sethoxydim. Pestic. Biochem. Physiol. 72:160168.CrossRefGoogle Scholar
Christoffers, M. J., Berg, M. L., and Messersmith, C. G. 2002. An isoleucine to leucine mutation in acetyl-coA carboxylase confers herbicide resistance in wild oat. Genome 45:10491056.CrossRefGoogle ScholarPubMed
Claus, J. and Behrens, R. 1976. Glyphosate translocation and quackgrass rhizome bud kill. Weed Sci. 24:149152.CrossRefGoogle Scholar
Comai, L., Sen, L. C., and Stalker, D. M. 1983. An altered aroA gene product confers resistance to the herbicide glyphosate. Science 221:370371.Google Scholar
Délye, C. 2005. Weed resistance to acetyl-coenzyme A carboxylase inhibitors: an update. Weed Sci. 53:728746.Google Scholar
Delye, C., Zhang, X., Chalopin, C., Michel, S., and Powles, S. B. 2003. An isoleucine residue within the carboxyl-transferase domain of multidomain acetyl-coenzyme A carboxylase is a major determinant of sensitivity to aryloxyphenoxypropionate inhibitors but not to cyclohexanedione inhibitors. Plant Physiol. 132:17161723.CrossRefGoogle Scholar
Delye, C., Zhang, X., Severine, M., Annick, M., and Powles, S. B. 2005. Molecular bases for sensitivity to Acetyl-coenzyme A carboxylase inhibitors in black-grass. Plant Physiol. 137:794806.Google Scholar
Devine, M. D. 1997. Mechanisms of resistance to acetyl-coenzyme A carboxylase inhibitors: a review. Pestic. Sci. 51:259264.Google Scholar
Devine, M. D. and Buth, J. L. 2001. Advantages of genetically modified canola: a Canadian perspective. Proceedings of the British Crop Protection Conference: Weeds 1–2:367372.Google Scholar
Dyer, W. E. 1994. Resistance to glyphosate. in Powles, S. B. and Holtum, J.A.M., eds. Herbicide Resistance in Plants: Biology and Biochemistry. Boca Raton, FL: Lewis. Pp. 229242.Google Scholar
Feng, P. C. C., Pratley, J. E., and Bohn, J. A. 1999. Resistance to glyphosate in Lolium rigidum, II: uptake, translocation, and metabolism. Weed Sci. 47:412415.Google Scholar
Feng, P. C. C., Tran, M., Chiu, T., Sammons, R. D., Heck, G. R., and CaJacob, C. A. 2004. Investigations into glyphosate-resistant horseweed (Conyza canadensis): retention, uptake, translocation and metabolism. Weed Sci. 52:498505.Google Scholar
Gianessi, L. P., Silvers, C. S., Sankula, S., and Carpenter, J. 2002. Plant Biotechnology: Current and Potential Impact for Improving Pest Management in U.S. Agriculture: An Analysis of 40 Case Studies—Herbicide Tolerant Soybean. Washington, D.C.: National Center for Food and Agricultural Policy. 32 p.Google Scholar
Gronwald, J. W. 1994. Resistance to photosystem II inhibiting herbicides. in Powles, S. B. and Holtum, J.A.M., eds. Herbicide Resistance in Plants: Biology and Biochemistry. Boca Raton, FL: Lewis. Pp. 2760.Google Scholar
Hall, L. M., Holtum, J. A. M., and Powles, S. B. 1994. Mechanisms responsible for cross-resistance and multiple resistance. in Powles, S. B. and Holtum, J.A.M., eds. Herbicide Resistance in Plants: Biology and Biochemistry. Boca Raton, FL: Lewis. Pp. 243261.Google Scholar
Heap, I. 2005. International survey of herbicide resistant weeds. Web page: http://www.weedscience.org. Accessed: December 12, 2005.Google Scholar
Herrmann, K. M. and Weaver, L. M. 1999. The shikimate pathway. Annu. Rev. Plant Physiol. Mol. Biol. 50:473503.Google Scholar
Holt, J. S. and Thill, D. C. 1994. Growth and productivity of resistant plants. in Powles, S. B. and Holtum, J.A.M., eds. Herbicide Resistance in Plants: Biology and Biochemistry. Boca Raton, FL: Lewis. Pp. 299316.Google Scholar
Ismail, B. S., Chuah, T. S., Salmijah, S., Teng, Y. T., and Schumacher, R. W. 2002. Germination and seedling emergence of glyphosate-resistant and susceptible biotypes of goosegrass [Eleusine indica (L) Gaertn]. Weed Biol. Manag. 2:177185.CrossRefGoogle Scholar
James, C. 2004. Preview: Global Status of Commercialized Biotech/GM Crops: 2004. ISAAA Briefs No. 32, ISAAA, Ithaca, NY, 12 p.Google Scholar
Jasieniuk, M. 1995. Constraints on the evolution of glyphosate resistance in weeds. Resist. Pest Manag. News 7:3132.Google Scholar
Jaworkski, E. G. 1982. Mode of action of N-phosphonomethyl-glycine: inhibition of aromatic amino acid biosynthesis. J. Agric. Food Chem. 20:11951198.CrossRefGoogle Scholar
Koger, C. H. and Reddy, K. N. 2005. Role of absorption and translocation in the mechanism of glyphosate resistance in horseweed (Conyza canadensis). Weed Sci. 53:8489.Google Scholar
Koger, C. H., Shaner, D. L., Henry, W. B., Nadler-Hassar, T., Thomas, W. E., and Wilcut, J. W. 2005. Assessment of two nondestructive assays for detecting glyphosate resistance in horseweed (Conyza canadensis). Weed Sci. 53:438445.CrossRefGoogle Scholar
Lee, L. J. 1999. Glyphosate resistant goosegrass (Eleusine indica) in Malaysia and some of its morphological differences. Proceedings of the 17th Asian-Pacific Weed Sci. Soc. conf. Bangkok: 9095.Google Scholar
Lee, L. J. and Ngim, J. 2000. A first report of glyphosate-resistant goosegrass [Eleusine indica (L) Gaertn] in Malaysia. Pest Manag. Sci. 56:336339.Google Scholar
Lorraine-Colwill, D. F., Hawkes, T. R., Williams, P. H., Warner, S. A. J., Sutton, P. B., Powles, S. B., and Preston, C. 1999. Resistance to glyphosate in Lolium rigidum . Pestic. Sci. 55:489491.Google Scholar
Lorraine-Colwill, D. F., Powles, S. B., Hawkes, T. R., and Preston, C. 2001. Inheritance of evolved glyphosate resistance in Lolium rigidum Gaud. Theor. Appl. Genet. 102:545550.CrossRefGoogle Scholar
Lorraine-Colwill, D. F., Powles, S. B., Hawkes, T. R., Hollinshead, P. H., Warner, S. A. J., and Preston, C. 2002. Investigations into the mechanism of glyphosate resistance in Lolium rigidum . Pestic. Biochem. Physiol. 74:6272.Google Scholar
Lydon, J. and Duke, S. O. 1988. Glyphosate induction of elevated levels of hydroxybenzoic acids in higher plants. J. Agric. Food Chem. 36:813818.Google Scholar
Main, C. L., Mueller, T. C., Hayes, R. M., and Wilkerson, J. B. 2004. Response of selected horseweed [Conyza canadensis (L.) Cronq.] populations to glyphosate. J. Agric. Food Chem. 52:879883.CrossRefGoogle ScholarPubMed
Mueller, T. C., Massey, J. H., Hayes, R. M., Main, C. L., and Stewart, C. N. Jr. 2003. Shikimate accumulates in both glyphosate-sensitive and glyphosate-resistant horseweed (Conyza canadensis L. Cronq). J. Agric. Food Chem. 51:680684.Google Scholar
Neve, P., Diggle, A. J., Smith, F. P., and Powles, S. B. 2003a. Simulating evolution of glyphosate resistance in Lolium rigidum, I: population biology of a rare resistance trait. Weed Res. 43:404417.Google Scholar
Neve, P., Diggle, A. J., Smith, F. P., and Powles, S. B. 2003b. Simulating evolution of glyphosate resistance in Lolium rigidum, II: past, present and future glyphosate use in Australian cropping. Weed Res. 43:418427.Google Scholar
Ng, C. H., Wickneswary, R., Salmijah, S., Teng, Y. T., and Ismail, B. S. 2003. Gene polymorphisms in glyphosate-resistant and -susceptible biotypes of Eleusine indica from Malaysia. Weed Res. 43:108115.Google Scholar
Ng, C. H., Wickneswary, R., Salmijah, S., Teng, Y. T., and Ismail, B. S. 2005. Glyphosate resistance in Eleusine indica from different origins and polymerase chain reaction amplification of specific alleles. Aust. J. Agric. Res. 55:407414.Google Scholar
Ng, C. H., Wickneswary, R., Surif, S., and Ismail, B. S. 2004. Inheritance of glyphosate resistance in goosegrass (Eleusine indica). Weed Sci. 52:564570.Google Scholar
Padgette, S. R., Re, D. B., Barry, G. F., Eichholz, D. E., Delannay, X., Fuchs, R. L., Kishore, G. M., and Fraley, R. T. 1996. New weed control opportunities: development of soybeans with a Roundup Ready gene. in Duke, S. O., ed. Herbicide Resistant Crops: Agricultural, Economic, Environmental, Regulatory, and Technological Aspects. Boca Raton, FL: CRC. Pp. 5389.Google Scholar
Padgette, S. R., Re, D. B., Gasser, C. S., Eicholtz, D. A., Frazier, R. B., Hironaka, C. M., Levine, E. B., Shah, D. P., Fraley, R. T., and Kishore, G. M. 1991. Site-directed mutagenesis of a conserved region of the 5-enolpyruvylshikimate-3-phosphate synthase active site. J. Biol. Chem. 266:22384–22369.Google Scholar
Pedersen, B. P., Neve, P., Andreasen, C., and Powles, S. B. 2006. Ecological fitness of a glyphosate resistant Lolium rigidum population: growth and seed production along a competition gradient. Basic Appl. Ecol. In press.CrossRefGoogle Scholar
Perez, A., Alister, C., and Kogan, M. 2004. Absorption, translocation, and allocation of glyphosate in resistance and susceptible Chilean biotypes of Lolium multiflorum . Weed Biol. Manag. 4:5658.Google Scholar
Perez, A. and Kogan, M. 2003. Glyphosate resistant Lolium multiflorum in Chilean orchards. Weed Res. 43:1219.Google Scholar
Perez-Jones, A. K., Park, J., Colquhoun, C., Mallory-Smith, C., and Kogan, M. 2005. Identification of a mutation in the target enzyme EPSP synthase in a glyphosate-resistant Lolium multiflorum biotype. Weed Sci. Soc. Am. Abstr. 416. Lawrence, KS: Weed Sci. Soc. Am. Google Scholar
Powles, S. B. 2003. Will glyphosate continue to aid world food production? Weed Sci. 51:471.CrossRefGoogle Scholar
Powles, S. B., Lorraine-Colwill, D. F., Dellow, J. J., and Preston, C. 1998. Evolved resistance to glyphosate in rigid ryegrass (Lolium rigidum) in Australia. Weed Sci. 46:604607.CrossRefGoogle Scholar
Pratley, J., Urwin, N., Stanton, R., Baines, P., Broster, J., Cullis, K., Schafer, D., Bohn, J., and Krueger, R. 1999. Resistance to glyphosate in Lolium rigidum, I: bioevaluation. Weed Sci. 47:405411.Google Scholar
Preston, C. 2002. Common mechanisms endowing herbicide resistance in weeds. in Spafford-Jacob, H., Dodd, J., and Moore, J. H., eds. Proceedings of the 13th Australian Weeds Conference, Plant Protection Society of South Australia, Perth, Australia. Pp. 666674.Google Scholar
Preston, C. 2005. Australian Glyphosate Resistance Register. National Glyphosate Sustainability Working Group: Web page: http://www.weeds.crc.org.au/glyphosate.Google Scholar
Saari, L. L., Cotterman, J. C., and Thill, D. C. 1994. Resistance to acetolactate synthase inhibiting herbicides. in Powles, S. B. and Holtum, J.A.M., eds. Herbicide Resistance in Plants: Biology and Biochemistry. Boca Raton, FL: Lewis. Pp. 83140.Google Scholar
Saroha, M. K., Sridhar, P., and Malik, V. S. 1998. Glyphosate-tolerant crops: genes and enzymes. J. Plant Biochem. Biotechnol. 7:6572.CrossRefGoogle Scholar
Scönbrunn, E., Eschenburg, S., Shuttleworth, W. A., Scloss, J. V., Amrhein, N., Evans, J. N. S., and Kabsch, W. 2001. Interaction of the herbicide glyphosate with its target enzyme 5-enolpyruvylshikimate 3-phosphate synthase in atomic detail. Proc. Nat. Acad. Sci. U S A. 98:13761380.Google Scholar
Simarmata, M., Kaufmann, J. E., and Penner, D. 2003. Potential basis of glyphosate resistance in California rigid ryegrass (Lolium rigidum). Weed Sci. 51:678682.Google Scholar
Simarmata, M. and Penner, D. 2004. Role of EPSP synthase in glyphosate resistance in rigid ryegrass (Lolium rigidum Gaud). Weed Sci. Soc. Am. Abstr. 118. Lawrence, KS: Weed Sci. Soc. Am. Google Scholar
Steinrucken, J. and Amrhein, N. 1980. The herbicide glyphosate is a potent inhibitor of 5-enolpyruvylshikimic acid 3-phosphate synthase. Biochem. Biophys. Res. Commun. 94:12071212.Google Scholar
Thai, T. Y. and Chiong, T. K. 1999. Weed control and management of resistant goosegrass (Eleusine indica) in Malaysia. Proceedings of the 17th Asian-Pacific Weed Sci. Soc. conf. Bangkok: 753758.Google Scholar
Tran, M., Baerson, S., Brinker, R., Casagrande, L., Falette, M., Feng, Y., Nemeth, M., Reynolds, T., Rodriguez, D., Schafer, D., Stalker, D., Taylor, N., Teng, Y., and Dill, G. 1999. Characterisation of glyphosate resistant Eleusine indica biotypes from Malaysia. Proceedings of the 17th Asian-Pacific Weed. Sci. Soc. conf. Bangkok: 527536.Google Scholar
Tranel, P. J. and Wright, T. R. 2002. Resistance of weeds to ALS-inhibiting herbicides: what have we learned? Weed Sci. 50:700712.Google Scholar
Trebst, A. 1996. The molecular basis of plant resistance to photosystem II herbicides. in Brown, T. M., ed. Molecular genetics and evolution of pesticide resistance. Washington, D.C.: American Chemical Society. Pp. 514.Google Scholar
Van Gessel, M. J. 2001. Glyphosate-resistant horseweed from Delaware. Weed Sci. 49:703705.CrossRefGoogle Scholar
Wakelin, A. M., Lorraine-Colwill, D. F., and Preston, C. 2004. Glyphosate resistance in four different populations of Lolium rigidum is associated with reduced translocation of glyphosate to meristematic zones. Weed Res. 44:453459.Google Scholar
Wakelin, A. M. and Preston, C. 2005. Target-site glyphosate resistance in rigid ryegrass (Lolium rigidum Gaudin). Weed Sci. Soc. Am. Abstr. 417. Lawrence, KS: Weed Sci. Soc. Am. Google Scholar
Waters, S. 1991. Glyphosate tolerant crops for the future: development, risks, and benefits. Proceedings of the Brighton Crop Protection conference: Weeds 165170.Google Scholar
Westwood, J. H. and Weller, S. C. 1997. Cellular mechanisms influence differential glyphosate sensitivity in field bindweed (Convolvulus arvensis) biotypes. Weed Sci. 45:211.Google Scholar
Westwood, J. H., Yerkes, C. N., DeGennaro, F. P., and Weller, S. C. 1997. Absorption and translocation of glyphosate in tolerant and susceptible biotypes of field bindweed (Convolvulus arvensis). Weed Sci. 45:658663.Google Scholar
Yuan, C. I., Chaing, M. Y., and Chen, Y. M. 2002. Triple mechanisms of glyphosate-resistance in a naturally occurring glyphosate-resistant plant Dicliptera chinensis . Plant Sci. 163:543554.Google Scholar
Zelaya, I. A. and Owen, M. D. K. 2005. Differential response of Amaranthus tuberculatus (Moz ex DC) JD Sauer to glyphosate. Pestic. Manag. Sci. 61:936950.Google Scholar
Zelaya, I. A., Owen, M. D. K., and Van Gessel, M. J. 2005. Inheritance of evolved glyphosate resistance in Conyza canadensis (L.) Cronq. Theor. Appl. Genet. 110:5870.Google Scholar
Zhang, X. and Devine, M. D. 2000. A point mutation in the plastidic ACCase gene conferring resistance to sethoxydim in green foxtail (Setaria viridis). Weed Sci. Soc. Am. Abstr. 40:81.Google Scholar