Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-28T01:07:21.143Z Has data issue: false hasContentIssue false

Effect of Reed-Sedge Peat Moss on Hybrid Bermudagrass Injury with Indaziflam and Prodiamine in Sand-Based Root Zones

Published online by Cambridge University Press:  20 January 2017

Patrick A. Jones*
Affiliation:
Department of Plant Sciences, The University of Tennessee, 252 Ellington Plant Sciences Building, 2431 Joe Johnson Drive, Knoxville, TN 37996-4561
James T. Brosnan
Affiliation:
Department of Plant Sciences, The University of Tennessee, 252 Ellington Plant Sciences Building, 2431 Joe Johnson Drive, Knoxville, TN 37996-4561
Dean A. Kopsell
Affiliation:
Department of Plant Sciences, The University of Tennessee, 252 Ellington Plant Sciences Building, 2431 Joe Johnson Drive, Knoxville, TN 37996-4561
Greg K. Breeden
Affiliation:
Department of Plant Sciences, The University of Tennessee, 252 Ellington Plant Sciences Building, 2431 Joe Johnson Drive, Knoxville, TN 37996-4561
*
Corresponding author's E-mail: [email protected]

Abstract

PRE herbicides have been reported to injure both the foliage and roots of hybrid bermudagrass turf established in sand culture. Research was conducted to evaluate the influence of reed-sedge peat moss (RSPM) on hybrid bermudagrass injury following PRE herbicide applications to plants established in sand culture. Washed sod plugs were established in mini-rhizotrons constructed with sand root-zones varying in organic carbon content (0.000, 0.003, 0.007, and 0.012 kg kg−1). Herbicide treatments included indaziflam (35 and 52.5 g ai ha−1) and prodiamine (840 g ai ha−1). Significant foliar injury was only observed with indaziflam at 52.5 g ha−1. When applied to plants in sand with no detectable (0.000 kg kg−1) organic carbon, foliar injury measured 61% by 6 wk after treatment. Comparatively, injury with indaziflam at 52.5 g ha−1 was reduced by 40% with applications to plants established in sand with 0.007 kg kg−1 organic carbon. Root length, root length density, and root surface area were greatest in sand-based root zones with ≥ 0.007 kg kg−1 organic carbon regardless of herbicide treatment; however, only indaziflam (52.5 g ha−1) and prodiamine-treated plants exhibited diminished root parameters relative to the nontreated check. Data in the current study illustrate that RSPM can affect above- and belowground injury following PRE herbicide applications to hybrid bermudagrass in sand root-zones.

Los herbicidas PRE han sido reportados como causantes del daño en el follaje y las raíces del césped bermuda híbrido en cultivo en arena. Se realizó una investigación para evaluar la influencia del musgo Sphagnum (RSPM) sobre el daño del césped bermuda híbrido después de aplicaciones de herbicidas PRE a plantas establecidas en cultivo en arena. Fragmentos lavados de estolones enraizados fueron establecidos en mini-rizotrones construidos con zonas de crecimiento radical de arena con un contenido variable de carbono orgánico (0.000, 0.003, 0.007, y 0.012 kg kg−1). Los tratamientos con herbicidas incluyeron (indaziflam 35 y 52.5 g ai ha−1) y prodiamine (840 g ai ha−1). Se observó un daño foliar significativo con indaziflam a 52.5 g ha−1. Cuando se aplicó a plantas en arena con carbono orgánico no detectable (0.000 kg kg−1), el daño foliar fue 61% a 6 semanas después del tratamiento. Comparativamente, el daño con indaziflam a 52.5 g ha−1 fue reducido en 40% con aplicaciones a plantas establecidas en arena con 0.007 kg kg−1 carbono orgánico. Las máximas longitud, longitud-densidad y área superficial de las raíces se observaron en zonas de crecimiento radical de arena con ≥0.007 kg kg−1 carbono orgánico sin importar el tratamiento del herbicida. Sin embargo, solamente plantas tratadas con indaziflam (52.5 g ha−1) y prodiamine exhibieron disminuciones en los parámetros de raíz en relación con el testigo no tratado. Los datos del presente estudio ilustran cómo RSPM puede afectar el daño del tejido aéreo y subterráneo en el césped bermuda híbrido posterior a aplicaciones de herbicidas PRE en las zonas de crecimiento radical en arena.

Type
Weed Management—Other Crops/Areas
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alonso, D. G., Koskinen, W. C., Oliveira, R. S. Jr., Constantin, J., and Mislankar, S. 2011 Sorption–desorption of indaziflam in selected agricultural soils. J. Agric. Food Chem. 59:1309613101.Google Scholar
Anonymous. 2010. Specticle 20 WSP herbicide label. Research Triangle Park, NC Bayer Environmental Sciences, 10 p.Google Scholar
Anonymous. 2012. Barricade 65 WG herbicide label. Greensboro, NC Syngenta Crop Protection, 36 p.Google Scholar
ASTM International. 2011. Annual Book of Standards. Volume 15.07. End Use Products. Standard Test Methods for Organic Matter Content of Athletic Field Rootzone Mixes. F1647-11.West Conshohocken, PA. DOI: , www.astm.org.Google Scholar
ASTM International. 2012. Annual Book of Standards. Volume 04.08. Soils and Rock (1). Standard Test Methods for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils. D2974-07a.West Conshohocken, PA. DOI: , www.astm.org.Google Scholar
Blumhorst, M. R., Weber, J. B., and Swain, L. R. 1990. Efficacy of selected herbicides as influenced by soil properties. Weed Technol. 4:279283.Google Scholar
Brosnan, J. T. and Breeden, G. K. 2012. Application placement affects postemergence smooth crabgrass and annual bluegrass control with indaziflam. Weed Technol. 26:661665.Google Scholar
Brosnan, J. T., Breeden, G. K., McCullough, P. E., and Henry, G. M. 2012. PRE and POST control of annual bluegrass (Poa annua) with indaziflam. Weed Technol. 26:4853.Google Scholar
Brosnan, J. T., Horvath, B. J., Elmore, M. T., Breeden, G. K., and Sorochan, J. C. 2010. Greenhouse investigation of strobilurin fungicide applications on creeping bentgrass root characteristics under two irrigation regimes. Crop Sci. 50:26052612.Google Scholar
Brosnan, J. T., McCullough, P. E., and Breeden, G. K. 2011. Smooth crabgrass control with indaziflam at various spring timings. Weed Technol. 25:363366.Google Scholar
Cheniae, G. M. and Martin, I. F. 1969. Photoreactiviation of manganese catalyst in photosynthetic oxygen evolution. Plant Physiol. 44:351360.Google Scholar
Cooper, R. J., Bhowmik, P. C., and Spokas, L. A. 1990. Root and rhizome growth of Kentucky bluegrass following application of pendimethalin. HortScience. 25:8486.Google Scholar
Fishel, F. M. and Coats, G. E. 1994. Bermudagrass (Cynodon dactylon) sod rooting as influenced by preemergence herbicides. Weed Technol. 8:4649.Google Scholar
Harrison, G. W., Weber, J. B., and Baird, J. V. 1976. Herbicide phytotoxicity as affected by selected properties of North Carolina soils. Weed Sci. 24:120126.Google Scholar
Hummel, N. W. Jr. 2000. What goes best with sand: peat, soil or compost? Golf Course Manag. 68:5760.Google Scholar
Johnson, B. J. 1996. Reduced rates of preemergence and postemergence herbicides for large crabgrass (Digitaria sanguinalis) and goosegrass (Eleusine indica) control in bermudagrass (Cynodon dactylon). Weed Sci. 44:585590.Google Scholar
Jones, P. A., Brosnan, J. T., Kopsell, D. A., Armel, G. R., and Breeden, G. K. 2013a. Preemergence herbicides affect hybrid bermudagrass nutrient content. J. Plant Nutr. In press.Google Scholar
Jones, P. A., Brosnan, J. T., Kopsell, D. A., and Breeden, G. K. 2013b. Soil type and rooting depth affect hybrid bermudagrass injury with preemergence herbicides. Crop Sci. 53:660665. DOI:, M. S. 1983. Analysis of combined experiments. Agron. J. 75:153–155.Google Scholar
Merrill, S. D. and Upchurch, D. R. 1994. Converting root numbers observed on minirhizotrons to equivalent root length density. Soil Sci. Soc. Amer. J. 58:10611067.Google Scholar
Myers, D. F., Hanrahan, R., Michel, J., Monke, B., Mudge, L., Norton, L., Olsen, C., Parker, A., Smith, J., and Spak, D. 2009. Indaziflam/BCS-AA10717: a new herbicide for pre-emergent control of grasses and broadleaf weeds for turf and ornamentals. Proc. South. Weed Sci. Soc. 62:393.Google Scholar
Perry, D. H., McElroy, J. S., Doroh, M. C., and Walker, R. H. 2011. Indaziflam utilization for controlling problematic turfgrass weeds. Appl. Turfgrass Sci. DOI:.Google Scholar
Rahman, A. and Matthews, L. J. 1979. Effect of soil organic matter on the phytotoxicity of thirteen s-triazine herbicides. Weed Sci. 27:158161.Google Scholar
Senseman, S. A. 2007. Herbicide Handbook. Lawrence, KS: Weed Science Society of America. Pp. 212–213, 265266, 283–288, 300–301.Google Scholar
Taiz, L. and Zeiger, E. 2010. Topic 17.11: Chorophyll biosynthesis. Plant Physiology, 5th ed. http://5e.plantphys.net/article.php?ch=7&id=76&search=chlorophyll. Accessed August 1, 2012.Google Scholar
Tresch, S., Plath, P., and Grossmann, K. 2005. Herbicidal cyanoacrylates with antimicrotubule mechanism of action. Pest Manag. Sci. 61:10521059 Google Scholar
United States Golf Association. 2007. United States Golf Association Recommendations for a Method of Putting Green Construction. http://www.usga.org/course_care/articles/construction/greens/Green-Section-Recommendations-For-A-Method-Of-Putting-Green-Construction/. Accessed January 4, 2013.Google Scholar