Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-19T07:22:24.506Z Has data issue: false hasContentIssue false

Effect of Carrier Volume on Grain Sorghum Response to Simulated Drift of Nicosulfuron

Published online by Cambridge University Press:  20 January 2017

Mark A. Matocha*
Affiliation:
Texas A&M AgriLife Extension Service, College Station, TX 77843
Curtis A. Jones
Affiliation:
Texas A&M Commerce, Commerce, TX 75428
*
Corresponding author's E-mail: [email protected].

Abstract

Research was conducted in 2010 and 2012 to determine the effect of simulated drift of nicosulfuron on growth and yield of grain sorghum. Herbicide rates represented 25, 12.5, and 6.3% of the use rate of nicosulfuron at 52 g ai ha−1. Nicosulfuron was applied in a constant carrier volume of 224 L ha−1 where herbicide concentration decreased with reduction in rate, and in carrier volumes of 56, 28, and 14 L ha−1 proportional to the 25, 12.5, and 6.3% herbicide rates, respectively. In 2010, grain sorghum injury and yield were greater when nicosulfuron was applied in constant compared to proportional carrier volume. Grain sorghum injury and plant height reduction increased with increasing nicosulfuron rate when averaged across carrier volume both years. In 2012, there was a greater reduction in grain sorghum yield from nicosulfuron applied in proportional carrier volume. These data indicate that simulated drift of nicosulfuron onto conventional grain sorghum causes significant height and yield reduction even at the lowest herbicide rate tested, and the effect of carrier volume may be influenced by seasonal rainfall.

En 2010 y 2012, se realizó una investigación para determinar el efecto de la deriva simulada de nicosulfuron sobre el crecimiento y el rendimiento del sorgo para grano. Las dosis del herbicida representaron 25, 12.5, y 6.3% de la dosis de uso 52 g ai ha−1 de nicosulfuron. Nicosulfuron fue aplicado a un volumen constante de 224 L ha−1 donde la concentración del herbicida disminuyó con la reducción de la dosis, y en volúmenes de 56, 28, y 14 L ha−1 proporcionales a los 25, 12.5, y 6.3% de dosis del herbicida, respectivamente. En 2010, el daño en el sorgo para grano y el rendimiento fueron mayores cuando nicosulfuron fue aplicado a un volumen constante que con volúmenes proporcionales. El daño en el sorgo y la reducción en la altura de planta aumentaron con el incremento de la dosis de nicosulfuron cuando se promedió a lo largo de los diferentes volúmenes de aplicación en ambos años. En 2012, hubo una mayor reducción en el rendimiento del sorgo para grano producido por nicosulfuron aplicado en volúmenes proporcionales. Estos datos indican que la deriva simulada de nicosulfuron en sorgo para grano convencional causa reducciones significativas en la altura y el rendimiento del cultivo inclusive a la dosis más baja evaluada, y el efecto del volumen de aplicación podría ser influenciado por la lluvia.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor for this paper: Jason Bond, Mississippi State University.

References

Literature Cited

Al-Khatib, A, Claassen, MM, Stahlman, PW, Geier, PW, Regehr, DL, Duncan, SR, Heer, WF (2003) Grain sorghum response to simulated drift from glufosinate, glyphosate, imazethapyr, and sethoxydim. Weed Technol 17:261265 Google Scholar
Anonymous (2013) Accent herbicide specimen label. Wilmington, DE: DuPont 13 pGoogle Scholar
Banks, PA, Schroeder, J (2002) Carrier volume affects herbicide activity in simulated spray drift studies. Weed Technol 16:833837 Google Scholar
Bennett, WF, Tucker, BB, Maunder, AB (1990) Modern Grain Sorghum Production. Ames, IA: Iowa State University Press. Pp 327 Google Scholar
Bhowmi, PC, O'Toole, BM, Andaloro, J (1992) Effects of nicosulfuron on quackgrass (Elytrigia repens) control in corn (Zea mays). Weed Technol 6:5256 Google Scholar
Bradford, KR, Messersmith, CG (2002) Adjuvant and herbicide concentration in spray droplets influence phytotoxicity. Weed Technol 16:631637 Google Scholar
Burnside, OC (1992) Rationale for developing herbicide-resistant crops. Weed Technol 6:621625 Google Scholar
Burnside, OC, Wicks, GA (1969) Influence of weed competition on sorghum growth. Weed Sci 17:332334 Google Scholar
Dobbels, AF, Kapusta, G (1993) Postemergence weed control in corn (Zea mays) with nicosulfuron combinations. Weed Technol 7:844850 Google Scholar
Durner, J, Gailus, V, Boger, P (1990) New aspects of inhibition of plant acetolactate synthase by chlorsulfuron and imazaquin. Plant Physiol 95:11441149 Google Scholar
Ellis, JM, Griffin, JL, Jones, CA (2002) Effect of carrier volume on corn (Zea mays) and soybean (Glycine max) response to simulated drift of glyphosate and glufosinate. Weed Technol 16:587592 Google Scholar
Feltner, KC, Hurst, HR, Anderson, LE (1969) Yellow foxtail competition in grain sorghum. Weed Sci 17:211213 Google Scholar
Ghosheh, HZ, Prostko, EP, Tingle, CH, Chandler, JM (2002) Simulated pyrithiobac drift effects on corn (Zea mays) and grain sorghum (Sorghum bicolor). Crop Prot 21:529532 Google Scholar
Grichar, WJ, Besler, BA, Brewer, KD (2005) Weed control and grain sorghum (Sorghum bicolor) response to postemergence applications of atrazine, pendimethalin, and trifluralin. Weed Technol 19:9991003 Google Scholar
Hennigh, DS, Kassim, A, Tuinstra, MR (2010) Postemergence weed control in acetolactate synthase–resistant grain sorghum. Weed Technol 24:219225 Google Scholar
Jordan, WR, Monk, RL, Miller, FR, Rosenow, DT, Clark, LE, Shouse, PJ (1983) Environmental physiology of sorghum. I. Environmental and genetic control of epicuticular wax load. Crop Sci 23:552558 Google Scholar
[NASS] National Agricultural Statistics Service (2013) Texas All Sorghum County Estimates. http://www.nass.usda.gov/statistics_by_state/Texas/publications/county_estimates/cesorga0.htm. Accessed September 15, 2013Google Scholar
Prostko, EP, Gey, TL, Davis, JW (2006) Texas panicum (Panicum texanum) control in irrigated field corn (Zea mays) with formasulfuron, glyphosate, nicosulfuron, and pendimethalin. Weed Technol 20:961964 Google Scholar
Roider, CA, Griffin, JL, Harrison, SA, Jones, CA (2008) Carrier volume affects wheat response to simulated glyphosate drift. Weed Technol 22:453458 Google Scholar
Rosales-Robles, E (1993) Postemergence shattercane (Sorghum bicolor) control in corn (Zea mays) in northern Tamaulipas, Mexico. Weed Technol 7:930934 Google Scholar
Senseman, SA, ed (2007) Herbicide Handbook. 9th edn. Champaign, IL: Weed Science Society of America. Pp 49124 Google Scholar
Smith, BS, Murry, DS, Green, JD, Wanyahaya, WM, Weeks, DL (1990) Interference of three annual grasses with grain sorghum (Sorghum bicolor). Weed Technol 4:245249 Google Scholar
Stahlman, PW, Wicks, GA (2000) Weeds and their control in sorghum. Pages 535590 in Smith, CW, Fredricksen, RA, eds. Sorghum: Origin, History, Technology, and Production. New York: John Wiley & Sons Google Scholar
Wolf, TM, Grover, R, Wallace, K, Shewchuk, SR, Maybank, J (1992) Effect of protective shields on drift and deposition characteristics of field sprayers. Pages 2952 in The Role of Application Factors in the Effectiveness and Drift of Herbicides. Regina, SK, Canada: Agriculture Canada Research Station Google Scholar
Wyse, DL (1992) Future impact of crops with modified herbicide resistance. Weed Technol 6:665668 Google Scholar