Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-24T18:46:28.121Z Has data issue: false hasContentIssue false

Dose–Response of Newly Established Elephantgrass (Pennisetum purpureum) to Postemergence Herbicides

Published online by Cambridge University Press:  20 January 2017

Dennis C. Odero*
Affiliation:
Everglades Research and Education Center, University of Florida, 3200 E Palm Beach Road, Belle Glade, FL 33430
Robert A. Gilbert
Affiliation:
Everglades Research and Education Center, University of Florida, 3200 E Palm Beach Road, Belle Glade, FL 33430
*
Corresponding author's E-mail: [email protected]

Abstract

Elephantgrass has been proposed as a potential feedstock for biofuel production in south Florida. To limit future invasion of escapes in sugarcane and vegetables, the response of newly established elephantgrass to glyphosate, clethodim, sethoxydim, asulam, and trifloxysulfuron was determined using dose–response curves. Log-logistic models were used to determine the herbicide dose required to produce 90% growth reduction (GR90). The GR90 values for shoot biomass at 21 d after treatment (DAT) were 477 g ae ha−1 of glyphosate, 262 g ai ha−1 of clethodim, 381 g ai ha−1 of sethoxydim, 12 kg ai ha−1 of asulam, and 94 g ai ha−1 of trifloxysulfuron. The GR90 values for root biomass at 35 DAT were 570 g ae ha−1 of glyphosate, 257 g ai ha−1 of clethodim, 432 g ai ha−1 of sethoxydim, 17 kg ai ha−1 of asulam, and 183 g ai ha−1 of trifloxysulfuron. Elephantgrass was predicted to exhibit 97, 98, 75, 1, and 5% mortality after application of glyphosate, clethodim, sethoxydim, asulam, and trifloxysulfuron, respectively, at the label use rates 35 DAT. Results suggest that glyphosate and clethodim will provide control of newly established elephantgrass at label use rates for spot treatments and in vegetables, respectively. Rates higher than the label use rate of sethoxydim will be required to provide acceptable control of newly established elephantgrass in vegetables. However, newly established elephantgrass was not controlled by asulam and trifloxysulfuron at label use rates, implying that control of escapes will be difficult in sugarcane.

Pennisetum purpureum ha sido propuesto como materia prima potencial para la producción de biocombustible en el sur de Florida. Para limitar futuras invasiones de escapes en caña de azúcar y vegetales, la respuesta de plantas recién establecidas de P. purpureum a glyphosate, clethodim, sethoxydim, asulam y trifloxysulfuron fue determinada usando curvas de respuesta a dosis. Modelos Log-logísticos fueron usados para determinar la dosis de herbicida requerida para producir una reducción del crecimiento del 90% (GR90). Los valores de GR90 para la biomasa aérea a 21 d después del tratamiento (DAT) fueron 477 g ae ha−1 de glyphosate, 262 g ai ha−1 de clethodim, 381 g ai ha−1 de sethoxydim, 12 kg ai ha−1 de asulam y 94 g ai ha−1 de trifloxysulfuron. Los valores de GR90 para la biomasa radicular a 35 DAT fueron 570 g ae ha−1 de glyphosate, 257 g ai ha−1 de clethodim, 432 g ai ha−1 de sethoxydim, 17 kg ai ha−1 de asulam y 183 g ai ha−1 de trifloxysulfuron. Se predijo que P. purpureum exhibiría 97, 98, 75, 1 y 5% de mortalidad después de la aplicación de glyphosate, clethodim, sethoxydim, asulam y trifloxysulfuron, respectivamente, a las dosis de uso según las etiquetas a 35 DAT. Los resultados sugieren que glyphosate y clethodim brindarán control de plantas recién establecidas de P. purpureum a las dosis de uso según las etiquetas para aplicaciones localizadas y en vegetales, respectivamente. Dosis superiores a las de la etiqueta serán requeridas para que sethoxydim brinde control aceptable de plantas de P. purpureum recién establecidas en vegetales. Sin embargo, estas plantas no fueron controladas con asulam y trifloxysulfuron a las dosis de uso según las etiquetas, lo que implica que el control de escapes en caña de azúcar será difícil.

Type
Weed Management—Other Crops/AREAS
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Amrhein, N., Deus, B., Gehrke, P., and Steinrucken, H. C. 1980. The site of the inhibition of the shikimate pathway by glyphosate. II. Interference of glyphosate with chorismate formation in vivo and in vitro. Plant Physiol. 66 :830834.Google Scholar
Askew, S. D. and Wilcut, J. W. 2002. Absorption, translocation, and metabolism of foliar-applied trifloxysulfuron in cotton, peanut, and selected weeds. Weed Sci. 50 :293298.Google Scholar
Barney, J. N. and DiTomaso, J. M. 2008. Nonnative species and bioenergy: are we cultivating the next invader? BioScience 58 :6470.Google Scholar
Bedmar, F. 1997. Bermudagrass (Cynodon dactylon) control in sunflower (Helianthus annuus), soybean (Glycine max), and potato (Solanum tuberosum) with postemergence graminicides. Weed Technol. 11 :683688.Google Scholar
Brown, S. M., Chandler, J. M., and Morrison, J. E. Jr. 1988. Glyphosate for johnsongrass (Sorghum halepense) control in no-till sorghum (Sorghum bicolor). Weed Sci. 36 :510513.Google Scholar
Burton, G. W. 1989. Registration of ‘Merkeron' nappiergrass. Crop Sci. 29 :1327.Google Scholar
Burton, J. D., Gronwald, J. W., Somers, D. A., Gengenbach, B. G., and Wyse, D. L. 1989. Inhibition of corn acetyl-CoA carboxylase by cyclohexanedione and aryloxyphenoxypropionate herbicides. Pestic. Biochem. Phys. 34 :7685.Google Scholar
Camacho, R. F. and Moshier, L. J. 1991. Absorption, translocation, and activity of CGA-136872, DPX-V9360, and glyphosate in rhizome johnsongrass (Sorghum halepense). Weed Sci. 39 :354357.Google Scholar
Claus, J. S. and Behrens, R. 1976. Glyphosate translocation and quackgrass rhizome bud kill. Weed Sci. 24 :149152.Google Scholar
Coombs, J. and Baldry, C. W. 1972. C-4 pathway in Pennisetum purpureum . Nat. New Biol. 238 :268270.Google Scholar
Coombs, J., Baldry, C. W., and Bucke, C. 1973. The C-4 pathway in Pennisetum purpureum II. Malate dehydrogenase and malic enzyme. Planta 110 :109120.Google Scholar
Dalley, C. D. and Richard, E. P. Jr. 2008. Control of rhizome johnsongrass (Sorghum halepense) in sugarcane with trifloxysulfuron and asulam. Weed Technol. 22 :397401.Google Scholar
[EISA] Energy Independence and Security Act. 2007. Public Law 110-140-Energy Independence and Security Act of 2007. U.S. Government Printing Office. http://www.gpo.gov/fdsys/pkg/PLAW-110publ140/content-detail.html. Accessed: December 1, 2011.Google Scholar
[FLEPPC] Florida Exotic Pest Plant Council. 2011. List of Invasive Plant Species. Florida Exotic Pest Plant Council. Wildland Weeds 14 :1114. http://www.fleppc.org/list/11list.html. Accessed December 1, 2011.Google Scholar
Gordon, D. R., Tancig, K. J., Onderdonk, D. A., and Gantz, C. A. 2011. Assessing the invasive potential of biofuel species proposed for Florida and the United States using the Australian Weed Risk Assessment. Biomass Bioenerg. 35 :7479.Google Scholar
Grichar, W. J. 1995. Comparison of postemergence herbicides for common bermudagrass (Cynodon dactylon) control in peanut (Arachis hypogaea). Weed Technol. 9 :825828.CrossRefGoogle Scholar
Gronwald, J. W. 1994. Herbicides inhibiting acetyl-CoA carboxylase. Biochem. Soc. Trans. 22 :616621.Google Scholar
Holm, L. G., Plucknett, D. L., Pancho, J. V., and Herberger, J. P. 1977. The World's Worst Weeds: Distribution and Biology. Honolulu : University Press of Hawaii. Pp. 367372.Google Scholar
Hossain, A. M., Kuramochi, H., Ishimine, Y., and Akamine, H. 2001. Application timing of asulam for torpedograss (Panicum repens L.) control in sugarcane in Okinawa island. Weed Biol. Manag. 1 :108114.Google Scholar
Ivany, J. A. 1981. Quackgrass (Agropyron repens) control with fall-applied glyphosate and other herbicides. Weed Sci. 29 :382386.CrossRefGoogle Scholar
Ivany, J. A. 1984. Quackgrass (Agropyron repens) control in potatoes (Solanum tuberosum) with sethoxydim. Weed Sci. 32 :194197.Google Scholar
Ivany, J. A. and Sanderson, J. B. 2003. Quackgrass (Elytrigia repens) control in potatoes (Solanum tuberosum) with clethodim. Phytoprotection 84 :2735.Google Scholar
Johnson, W. G. and Frans, R. E. 1991. Johnsongrass (Sorghum halepense) control in soybeans (Glycine max) with postemergence herbicides. Weed Technol. 5 :8791.Google Scholar
Korndörfer, P. H. 2011. Biomass and Energy Yields of Bioenergy Germplasm Grown on Sandy Soils in Florida. . Gainesville, FL : University of Florida. 80 p.Google Scholar
LaRossa, R. A. and Schloss, J. V. 1984. The herbicide sulfometuron methyl is bacteriostatic due to inhibition of acetolactate synthase. J. Biol. Chem. 259 :87538757.Google Scholar
McCarty, L. B., Higgins, J. M., Corbin, F. T., and Whitwell, T. 1990. Absorption, translocation, and metabolism of sethoxydim in centipedegrass and goosegrass. J. Am. Soc. Hortic. Sci. 115 :605607.Google Scholar
McElroy, J. S., Yelverton, F. H., Burke, I. C., and Wilcut, J. W. 2004. Absorption, translocation, and metabolism of halosulfuron and trifloxysulfuron in green kyllinga (Kyllinga brevifolia) and false-green kyllinga (K. gracillima). Weed Sci. 52 :704710.Google Scholar
McWhorter, C. G., Jordan, T. N., and Wills, G. D. 1980. Translocation of 14C-glyphosate in soybeans (Glycine max) and johnsongrass (Sorghum halepense). Weed Sci. 28 :113118.CrossRefGoogle Scholar
Millhollon, R. W. 1976. Asulam for johnsongrass control in sugarcane. Weed Sci. 24 :496499.Google Scholar
Nandula, V. K., Poston, D. H., Reddy, K. N., and Koger, C. H. 2007. Formulation and adjuvant effects on uptake and translocation of clethodim in bermudagrass (Cynodon dactylon). Weed Sci. 55 :611.Google Scholar
Odero, D. C. and Gilbert, R. A. 2012. Response of giant reed (Arundo donax) to asulam and trifloxysulfuron. Weed Technol. 26 :7176.CrossRefGoogle Scholar
Pinheiro, J. C. and Bates, D. M. 2000. Mixed-Effects Models in S and S-PLUS. Springer-Verlag. New York. 530 p.Google Scholar
Presidential Documents. 1999. Executive Order 13112 on February 3, 1999. Invasive Species. Federal Register Vol. 64. No. 25. http://frwebgate.access.gpo.gov/cgi-bin/getdoc.cgi?dbname=1999_register&docid=99-3184-filed.pdf. Accessed: January 28, 2012.Google Scholar
R Development Core Team. 2009. R: A Language and Environment for Statistical Computing. Vienna. ISBN 3-900051-07-9. URL: http://www.R-project.org.Google Scholar
Raghu, S., Anderson, R. C., Daehler, C. C., Davis, A. S., Wiedenmann, R. N., Simberloff, D., and Mack, R. N. 2006. Adding biofuels to the invasive species fire? Science 313 :1742.CrossRefGoogle Scholar
Ray, T. B. 1984. Inhibition of valine and isoleucine biosynthesis in plants. Plant Physiol. 75 :827831.Google Scholar
Richard, E. P. 1997. Effects of fallow bermudagrass (Cynodon dactylon) control programs on newly planted sugarcane (Saccharum spp. hybrids). Weed Technol. 11 :677682.CrossRefGoogle Scholar
Ritz, C. and Streibig, J. C. 2005. Bioassay analysis using R. J. Stat. Soft. 12 :122.Google Scholar
Salisbury, C. D., Chandler, J. M., and Merkle, M. G. 1991. Ammonium sulfate enhancement of glyphosate and SC-0224 control of johnsongrass (Sorghum halepense). Weed Technol. 5 :1821.Google Scholar
Seefeldt, S. S., Jensen, J. E., and Fuerst, E. P. 1995. Log-logistic analysis of herbicide dose–response relationships. Weed Technol. 9 :218227.Google Scholar
Sharma, M. P., Van Den Born, W. H., and McBeath, D. K. 1978. Spray retention, foliar penetration, translocation and selectivity of asulam in wild oats and flax. Weed Res. 18 :169173.Google Scholar
Singh, M., Malik, M., Ramirez, A.H.M., and Jhala, A. J. 2011. Tank mix of saflufenacil with glyphosate and pendimethalin for broad-spectrum weed control in Florida citrus. HortTechnology 21 :606615.Google Scholar
Stephen, N. H., Cook, G. T., and Duncan, H. J. 1980. A possible mechanism of action of asulam involving folic acid biosynthesis. Ann. Appl. Biol. 96 :227234.Google Scholar
Thompson, J. B. 1919. Napier and Merker Grasses. Gainsville, FL : Florida Agricultural Experiment Station Bulletin 153. Pp. 235249.Google Scholar
Troxler, S. C., Burke, I. C., Wilcut, J. W., Smith, W. D., and Burton, J. 2003. Absorption, translocation, and metabolism of foliar-applied trifloxysulfuron in purple and yellow nutsedge (Cyperus rotundus and C. esculentus). Weed Sci. 51 :1318.Google Scholar
[USDA] United States Department of Agriculture. 2010. A USDA Regional Roadmap to Meeting the Biofuels Goals of the Renewable Fuels Standard by 2022. http://www.usda.gov/documents/USDA_Biofuels_Report_6232010.pdf. Accessed January 28, 2012.Google Scholar
[USDA] United States Department of Agriculture. 2011. National Agricultural Statistics Service. Statistics by Subject. http://www.nass.usda.gov/Statistics_by_Subject/index.php?sector=CROPS. Accessed: January 28, 2012.Google Scholar
[USDA-NRCS] United States Department of Agriculture-Natural Resources Conservation Service. 2011. County Distribution Pennisetum purpureum Schumach—Elephant Grass PEPU2 in the state of Florida. http://plants.usda.gov/java/county?state_name=Florida&statefips=12&symbol=PEPU2. Accessed: December 1, 2011.Google Scholar
Veerasekaran, P., Kirkwood, R. C., and Fletcher, W. W. 1977. Studies on the mode of action of asulam in bracken (Pteridium aquilinum L. Kuhn) I. Absorption and translocation of [14C]asulam. Weed Res. 17 :3339.Google Scholar
Veerasekaran, P., Kirkwood, R. C., and Parnell, E. W. 1981a. Studies of the mechanism of action of asulam in plants. Part I: antagonistic interaction of asulam and 4-amino-benzoic acid. Pestic. Sci. 12 :325329.Google Scholar
Veerasekaran, P., Kirkwood, R. C., and Parnell, E. W. 1981b. Studies of the mechanism of action of asulam in plants. Part II: effect of asulam on the biosynthesis of folic acid. Pestic. Sci. 12 :330338.CrossRefGoogle Scholar
Venables, W. N. and Ripley, B. D. 2002. Modern Applied Statistics with S. 4th ed. New York : Springer. 495 p.Google Scholar
Whitwell, T., Wehtje, G., Walker, R. H., and McGuire, J. A. 1985. Johnsongrass (Sorghum halepense) control in soybeans (Glycine max) with postemergence grass herbicides applied alone and in mixtures. Weed Sci. 33 :673678.CrossRefGoogle Scholar
Wilcut, J. W. 1991. Efficacy and economics of common bermudagrass (Cynodon dactylon) control in peanut (Arachis hypogaea). Peanut Sci. 18 :106109.Google Scholar
Wilcut, J. W., Wehtje, G. R., Patterson, M. G., Cole, T. A., and Hicks, T. V. 1989. Absorption, translocation, and metabolism of foliar-applied chlorimuron in soybeans (Glycine max), peanuts (Arachis hypogaea), and selected weeds. Weed Sci. 37 :175180.Google Scholar
Wills, G. D. 1984. Toxicity and translocation of sethoxydim in bermudagrass (Cynodon dactylon) as affected by environment. Weed Sci. 32 :2024.Google Scholar
Woodard, K. R., Prine, G. M., and Bachrein, S. 1993. Solar energy recovery by elephantgrass, energycane, and elephantmillet canopies. Crop Sci. 33 :824830.Google Scholar