Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T06:21:29.107Z Has data issue: false hasContentIssue false

Does Timing Influence the Utility of Reduced Atrazine Rates for Proactive Resistance Management?

Published online by Cambridge University Press:  20 January 2017

Ross A. Recker
Affiliation:
Department of Agronomy, University of Wisconsin-Madison, 1575 Linden Drive, Madison, WI 53706
Joseph G. Lauer
Affiliation:
Department of Agronomy, University of Wisconsin-Madison, 1575 Linden Drive, Madison, WI 53706
David E. Stoltenberg
Affiliation:
Department of Agronomy, University of Wisconsin-Madison, 1575 Linden Drive, Madison, WI 53706
Paul D. Mitchell
Affiliation:
Department of Agricultural and Applied Economics, University of Wisconsin-Madison, 427 Lorch Street, Madison, WI 53706
Vince M. Davis*
Affiliation:
Department of Agronomy, University of Wisconsin-Madison, 1575 Linden Drive, Madison, WI 53706
*
Corresponding author's E-mail: [email protected].

Abstract

Atrazine is an important herbicide for broadleaf weed control in corn. Use rates have declined in many corn production systems due to environmental concerns and the availability of other effective herbicides, especially glyphosate in glyphosate-resistant hybrids. However, using multiple effective herbicide modes of action is ever more important because occurrence of herbicide-resistant weeds is increasing. An experiment to compare application timings of reduced rates of atrazine to benefit resistance management in broadleaf weeds while protecting corn yield was conducted in Wisconsin across four site-years in 2012 and 2013. Herbicide treatments consisted of five atrazine rate and timing combinations and three POST base herbicides: glyphosate, glufosinate, and tembotrione. Metolachlor was applied PRE at 2.1 kg ai ha−1 for grass control in all treatments. A linear regression model estimated that atrazine rates ≥ 1.0 kg ai ha−1 applied PRE would prevent exposure of common lambsquarters plants to POST herbicides, but giant ragweed and velvetleaf exposure was not influenced by timing. Corn yield was also not influenced by atrazine rate and timing combinations at the α = 0.05 level; however, at P = 0.06, corn yield was greater for atrazine applied PRE at 1.1 kg ha−1 than for atrazine applied PRE at 0.5 kg ha−1, POST at 1.1 kg ha−1, or not at all. In summary, higher rates of atrazine applied PRE may improve yield, as reported by others, but this study concludes reduced rates of atrazine (i.e., ≤ 1.1 kg ha−1) applied to corn in a POST tank mixture combination provided more consistent control of giant ragweed, velvetleaf, and common lambsquarters compared with atrazine applied PRE. This information should help direct atrazine application timing applied POST when applied at low rates to improve proactive herbicide resistance management.

Atrazine es un herbicida importante para el control de malezas de hoja ancha en maíz. Las dosis han sido reducidas en muchos sistemas de producción de maíz debido a preocupaciones sobre su impacto en el ambiente y la disponibilidad de otros herbicidas efectivos, especialmente glyphosate en híbridos de maíz con resistencia a glyphosate. Sin embargo, el uso de herbicidas efectivos con múltiples modos de acción es aún más importante debido al incremento en la aparición de malezas resistentes a herbicidas. En 2012 y 2013, se realizó un experimento en Wisconsin a lo largo de cuatro sitios-años para comparar momentos de aplicación de atrazine a dosis reducidas para beneficiar el manejo de resistencia en malezas de hoja ancha y a la vez proteger el rendimiento del maíz. Los tratamientos de herbicidas consistieron en cinco combinaciones de dosis de atrazine y de momentos de aplicación y tres herbicidas POST: glyphosate, glufosinate, y tembotrione. Metolachlor fue aplicado PRE a 2.1 kg ai ha−1 para el control de gramíneas en todos los tratamientos. Un modelo de regresión lineal estimó que dosis de atrazine ≥ 1.0 kg ai ha−1 aplicadas PRE prevendrían la exposición de Chenopodium album a los herbicidas POST, pero Ambrosia trifida y Abutilon theophrasti no fueron influenciadas por el momento de aplicación. El rendimiento del maíz no fue influenciado por las combinaciones de dosis de atrazine y momentos de aplicación al nivel α = 0.05. Sin embargo, a un nivel de P = 0.06, el rendimiento del maíz fue mayor para atrazine PRE a 1.1 kg ha−1 que para atrazine PRE a 0.5 kg ha−1, POST a 1.1 kg ha−1, o sin atrazine del todo. En resumen, las dosis más altas de atrazine aplicado PRE podrían mejorar el rendimiento, como otros han reportado, pero este estudio concluye que las dosis reducidas de atrazine (i.e., ≤ 1.1. kg ha−1) aplicadas a maíz en una combinación de mezcla en tanque POST brinda un control más consistente de A. trifida, A. theophrasti, y C. álbum, al compararse con atrazine aplicado PRE. Esta información debería ayudar a dirigir el momento de aplicación de atrazine aplicado POST cuando se usan dosis bajas para mejorar el manejo proactivo de resistencia a herbicidas.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abendroth, JA, Martin, AR, Roeth, FW (2006) Plant response to combinations of mesotrione and photosystem II inhibitors. Weed Technol 20:267274 CrossRefGoogle Scholar
Anonymous (2013) AAtrex® 4L product label. Syngenta Crop Protection LLC. Greensboro, NC: Syngenta. p 11 Google Scholar
Armel, GR, Wilson, HP, Richardson, RJ, Hines, TE (2003) Mesotrione, acetochlor, and atrazine for weed management in corn (Zea mays). Weed Technol 17:284290 Google Scholar
Bollman, SL, Kells, JJ, Penner, D (2006) Weed response to mesotrione and atrazine applied alone and in combination preemergence. Weed Technol 20:903907 CrossRefGoogle Scholar
Box, GEP, Cox, DR (1964) An analysis of transformations. J R Stat Soc Ser B 26:211252 Google Scholar
Bradley, PR, Johnson, WG, Hart, SE, Buesinger, ML, Massey, RE (2000) Economics of weed management in glufosinate-resistant corn (Zea mays L.). Weed Technol 14:495501 Google Scholar
Bridges, DC (2008) Benefits of triazine herbicides in corn and sorghum production. Pages 163174 in LeBaron, HM, McFarland, JE, Burnside, O, eds. The Triazine Herbicides: 50 Years Revolutionizing Agriculture. San Diego: Elsevier Google Scholar
Fernandez-Cornejo, J, Wechsler, S, Livingston, M, Mitchell, L (2014) Genetically engineered crops in the United States. U.S. Department of Agriculture, Economic Research Service. ERR-162. 54 pGoogle Scholar
Gilliom, RJ, Barbash, JE, Crawford, CG, Hamilton, PA, Martin, JD, Nakagaki, LH, Scott, JC, Stackelburg, PE, Thelin, GP, Wolock, DM (2006) The Quality of Our Nation's Waters: Pesticides in the Nation's Streams and Ground Water, 1992–2001. Denver, CO: USGS Circ. 1291. http://pubs.usgs.gov/circ/2005/1291/pdf/circ1291_front.pdf. Accessed April, 29 2014Google Scholar
Hanson, JE, Stoltenberg, DE, Lowery, B, Binning, LK (1997) Influence of application rate on atrazine fate in a silt loam soil. J Environ Q 26:829835 Google Scholar
Hugie, JA, Bollero, GA, Tranel, PJ, Riechers, DE (2008) Defining the rate requirements for synergism between mesotrione and atrazine in redroot pigweed (Amaranthus retroflexus). Weed Sci 56:265270 CrossRefGoogle Scholar
Johnson, WG, Bradley, PR, Hart, SE, Buesinger, ML, Massey, RE (2000) Efficacy and economics of weed management in glyphosate-resistant corn (Zea mays). Weed Technol 14:5765 Google Scholar
Jones, CA, Chandler, JM, Morrison, JE Jr., Senseman, SA, Tingle, CH (2001) Glufosinate combinations and row spacing for weed control in glufosinate-resistant corn (Zea mays). Weed Technol 15:141147 Google Scholar
Loux, MM, Dobbels, AF, Johnson, WG, Young, BG (2011) Effect of residual herbicide and postemergence application timing on weed control and yield in glyphosate-resistant corn. Weed Technol 25:1924 Google Scholar
Mitchell, PD (2013) Market-level assessment of the economic benefits of atrazine in the United States. Pestic Manag Sci 70:16841696 CrossRefGoogle Scholar
Norsworthy, JK, Ward, SM, Shaw, DR, Llewellyn, RS, Nichols, RL, Webster, TM, Bradley, KW, Frisvold, G, Powles, SB, Burgos, NR (2012) Reducing the risks of herbicide resistance: Best management practices and recommendations. Weed Sci 60:3162 Google Scholar
Owen, M (2010) Herbicide-Resistant Weeds in Genetically Engineered Crops. Available at http://oversight.house.gov/wp-content/uploads/2012/01/20100728owen.pdf. Accessed January 30, 2014Google Scholar
Postle, J, LeMasters, G, Morrison, L, Brook, JV, Larson, J (1997) Groundwater Protection: An Evaluation of Wisconsin's Atrazine Rule. Madison, WI: Wisconsin Department of Agriculture, Trade, and Consumer Protection ARM Pub 26B. p 6 Google Scholar
Sankula, S (2006) Quantification of the Impacts on US Agriculture of Biotechnology-Derived Crops Planted in 2005. Washington, DC: National Center for Food and Agricultural Policy. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.178.3544&rep=rep1&type=pdf. Accessed March 28, 2014Google Scholar
Schwarz, G (1978) Estimating the dimension of a model. Ann Stat 6:461464 CrossRefGoogle Scholar
Solomon, KR, Baker, DB, Richards, RP, Dixon, KR, Klaine, SJ, La Point, TW, Kendall, RJ, Weisskopf, CP, Giddings, JM, Giesy, JP (1996) Ecological risk assessment of atrazine in North American surface waters. Environ Toxicol Chem 15:3176 Google Scholar
Sutton, P, Richards, C, Buren, L, Glasgow, L (2002) Activity of mesotrione on resistant weeds in maize. Pestic Manag Sci 58:981984 Google Scholar
Tharp, BE, Kells, JJ (2002) Residual herbicides used in combination with glyphosate and glufosinate in corn (Zea mays). Weed Technol 16:274281 Google Scholar
Woodyard, AJ, Bollero, GA, Riechers, DE (2009) Broadleaf weed management in corn utilizing synergistic postemergence herbicide combinations. Weed Technol 23:513518 CrossRefGoogle Scholar
Young, BG (2006) Changes in herbicide use patterns and production practices resulting from glyphosate-resistant crops. Weed Technol 20:301307 Google Scholar