Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T14:27:55.190Z Has data issue: false hasContentIssue false

Dispersal and Frequency of Glyphosate-Resistant and Glyphosate-Tolerant Weeds in Soybean-producing Edaphoclimatic Microregions in Brazil

Published online by Cambridge University Press:  30 January 2019

Felipe Ridolfo Lucio*
Affiliation:
Research Scientist, Corteva Agriscience Agriculture Division of DowDuPont, São Paulo, Brazil
Augusto Kalsing
Affiliation:
Research Scientist, Corteva Agriscience Agriculture Division of DowDuPont, São Paulo, Brazil
Fernando Storniolo Adegas
Affiliation:
Researcher, Brazilian Agricultural Research Corporation, Embrapa Soybean, Brazil
Caio Vitagliano Santi Rossi
Affiliation:
Research Scientist, Corteva Agriscience Agriculture Division of DowDuPont, São Paulo, Brazil
Núbia Maria Correia
Affiliation:
Researcher, Brazilian Agricultural Research Corporation, Embrapa, Cerrado, Brasilia, Brazil
Dionisio Luiz Pisa Gazziero
Affiliation:
Researcher, Brazilian Agricultural Research Corporation, Embrapa Soybean, Brazil
Alexandre Ferreira da Silva
Affiliation:
Researcher, Brazilian Agricultural Research Corporation, Embrapa Maize and Sorghum, Sete Lagoas, Brazil
*
Author for correspondence: Felipe Ridolfo Lucio, Corteva Agriscience Agriculture Division of DowDuPont, São Paulo 14027-025, Brazil. (Email: [email protected])

Abstract

Glyphosate-resistant (GR) and glyphosate-tolerant weeds cause considerable yield losses and represent a growing threat to soybean production systems. Despite the relevance of this topic, few studies have evaluated the dispersal of these species in Brazil. The objective of this study was to evaluate the dispersal and frequency of known GR and glyphosate-tolerant weeds in soybean-producing microregions. A total of 2,481 interviews were conducted in different regions of Brazil. The interviews were stratified among 20 edaphoclimatic microregions (ECRs) to cover all of the country’s soybean-producing regions. A minimum number of interviews was estimated to generate a margin of error of ≤10% within the ECRs and ≤5% in the country. The values of the farmers’ responses were extrapolated to the total soybean production area of each ECR and the country as a whole, and the absolute values of each response were normalized as percentage values. The dispersal and management data demonstrate a loss of efficiency of glyphosate-resistance technology. Species that are naturally tolerant to glyphosate such as goosegrass, Commelina spp., and Ipomoea spp. had a greater presence in the ECRs, as did the resistant biotypes, particularly Conyza spp. and sourgrass, due to the large area cultivated with GR soybean, where glyphosate has been used with high frequency.

Type
Research Article
Copyright
© Weed Science Society of America, 2019. 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Cite this article: Lucio FR, Kalsing A, Adegas FS, Rossi CVS, Correia NM, Gazziero DLP, da Silva AF (2019) Dispersal and frequency of glyphosate-resistant and glyphosate-tolerant weeds in soybean-producing edaphoclimatic microregions in Brazil. Weed Technol 33:217–231. doi: 10.1017/wet.2018.97

References

Adegas, FS, Vargas, L, Gazziero, DL, Karam, D, Silva, AF, Agostinetto, D (2017) Impacto econômico da resistência de plantas daninhas a herbicidas no Brasil. Embrapa Soja Circular Técnica no. 132. Londrina, Brazil: Embrapa Soja. 12 pGoogle Scholar
Andrade, ER Jr, Cavenaghi, AL, Guimarães, SC, Carvalho, SJP (2015) Primeiro relato de Amaranthus palmeri no Brasil em áreas agrícolas no estado do Mato Grosso. Circular Técnica ImaMT no. 19. 8 pGoogle Scholar
Azania, CM, Azania, AAPM, Pizzo, IV, Schiavetto, AR, Zera, FS, Marcari, MA, Santos, JL (2009) Chemical management of convolvulaceae and euphorbiaceae in sugarcane during dry season. Planta Daninha 27:841848Google Scholar
Brookes, G, Barfoot, P (2016) GM crops: global socio-economic and environmental impacts 1996–2014. Dorchester, UK: PG Economics. 189 pGoogle Scholar
Brunharo, CA, Patterson, EL, Carrijo, DR, de Melo, M S, Nicolai, M, Gaines, TA, Nissen, SJ, Christoffoleti, PJ (2016) Confirmation and mechanism of glyphosate resistance in tall windmill grass (Chloris elata) from Brazil. Pest Manag Sci 72:17581764Google Scholar
Cerdeira, AL, Gazziero, DLP, Duke, SO, Matallo, MB (2011) Agricultural impacts of glyphosate-resistant soybean cultivation in South America. J Agric Food Chem 59:57995807Google Scholar
Chang, KF, Hwang, SF, Conner, RL, Ahmed, HU, Zhou, Q, Turnbull, GD, Strelkov, SE, McLaren, DL, Gosse, BD (2015) First report of Fusarium proliferatum causing root rot in soybean (Glycine max L.) in Canada. Crop Prot 67:5258Google Scholar
[CONAB] Companhia Nacional de Abastecimento (2017) Acompanhamento de safra brasileira: grãos, décimo-segundo levantamento, safra 2016/17. http://www.conab.gov.br/OlalaCMS/uploads/arquivos/17_09_12_10_14_36_boletim_graos_setembro_2017.pdf. Accessed: March 1, 2018Google Scholar
Culpepper, A, Flanders, J, York, A, Webster, T (2004) Tropical Spiderwort (Commelina benghalensis) control in glyphosate-resistant cotton. Weed Technol 18:432436Google Scholar
Davis, VM, Gibson, KD, Johnson, WG (2008) A field survey to determine distribution and frequency of glyphosate-resistant horseweed (Conyza canadensis) in Indiana. Weed Technol 22:331338Google Scholar
Freitas, RE, Mendonça, MAA (2016) Expansão Agrícola no Brasil e a Participação da Soja: 20 anos. Econ e Soc Rural 54:497516Google Scholar
Gazziero, DLP, Silva, AF (2017) Caracterização e manejo de Amaranthus palmeri. Documentos Embrapa Soja no 384. Londrina, Brazil: Embrapa Soja. 39 pGoogle Scholar
Hartman, GL, West, ED, Herman, TK (2011) Crops that feed the world 2. Soybean—worldwide production, use, and constraints caused by pathogens and pests. Food Secur 3:517Google Scholar
Heap, I (2018) The International Survey of Herbicide Resistant Weeds. http://www.weedscience.com. Accessed: February 19, 2018Google Scholar
[IBGE] Instituto Brasileiro de Geografia e Estatística (2018) Áreas dos Municípios. https://www.ibge.gov.br/geociencias-novoportal/organizacao-do-territorio/estrutura-territorial/15761-areas-dos-municipios.html?edicao=15868&t=sobre. Accessed: February 2, 2018Google Scholar
Kasper, M, Farias, JRB (2012) Regionalização dos testes de Valor de Cultivo e Uso e da indicação de cultivares de soja: terceira aproximação. Londrina, Brazil: Embrapa Soja no. 330. 69 pGoogle Scholar
López-Ovejero, R, Takano, HK, Nicolai, M , Ferreira, A, Melo, MSC, Cavenaghi, AL, Christoffoleti, PJ, Oliveira, RS Jr (2017) Frequency and dispersal of glyphosate-resistant sourgrass (Digitaria insularis) populations across brazilian agricultural production areas. Weed Sci 65:285294Google Scholar
Lorenzi, H (2000) Plantas daninhas do Brasil: terrestres, aquáticas, parasitas e tóxicas. Nova Odessa, SP, Brazil: Instituto Plantarum. 608 pGoogle Scholar
Lorenzi, H (2006) Manual de identificação e controle de plantas daninhas: plantio direto e convencional. 6th ed. Nova Odessa, SP, Brazil: Instituto Plantarum. 339 pGoogle Scholar
Mendonça, GS, Martins, CC, Martin, D, Costa, NV (2014) Ecophysiology of seed germination in Digitaria insularis ((L.) Fedde). Rev Ciênc Agron 45:823832Google Scholar
Moreira, MS, Nicolai, M, Carvalho, SJP, Christoffoleti, PJ (2007)Glyphosate-resistance in Conyza canadensis and C. bonariensis. Planta Daninha 25:157164Google Scholar
Oerke, EC (2006) Crop losses to pests. J Agric Sci 144:3143Google Scholar
Oliveira, GLT, Schneider, M (2016) The politics of flexing soybeans: China, Brazil and global agroindustrial restructuring. J Peasant Stud 43(1),10.1080/03066150.2014.993625Google Scholar
Paduch, D, Trezzi, MM, Guimarães, ACD, Barancelli, MVJ, Pasini, R, Vidal, RA (2017) Evolution of natural resistance to glyphosate in morning glory populations. Planta Daninha 35:e017159430Google Scholar
Santos, IC, Silva, AA, Ferreira, F.A, Miranda, GV, Pinheiro, RAN (2001) Eficiência de glyphosate no controle de Commelina benghalensis e Commelina diffusa. Planta Daninha 19:135143Google Scholar
Soteres, JK, Peterson, M (2015) Monitoring and Mitigation of Herbicide Resistance: Global Herbicide Resistance Committee (HRAC) Perspectives. http://www.hracglobal.com. Accessed: April 01, 2017Google Scholar
Souza, AP, Mota, LL, Zamadei, T, Martim, CC, Almeida, FT, Paulino, J (2013) Classificação climática e balanço hídrico climatológico no estado de mato grosso. Nativa 1:3443Google Scholar
Vargas, L, Nohatto, MA, Agostinetto, D, Bianchi, MA, Paula, JM, Polidoro, E, Toledo, RE (2013) Management practices×Euphorbia heterophylla resistance to ALS-inhibitors and tolerance to glyphosate in Rio Grande do Sul. Planta Daninha 31:427432Google Scholar
Vargas, L, Roman, ES (2006) Resistência de plantas daninhas a herbicidas: conceitos, origem e evolução. Passo Fundo, Brazil: Embrapa Trigo no. 58. 22 pGoogle Scholar
Whitaker, JR, York, AC, Jordan, DL, Culpepper, AS (2010) Palmer amaranth (Amaranthus palmeri) control in soybean with glyphosate and conventional herbicide systems. Weed Technol 24:403410Google Scholar