Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-14T06:59:56.289Z Has data issue: false hasContentIssue false

Comparing Physical, Chemical, and Cold Stratification Methods for Alleviating Dormancy of Giant Ragweed (Ambrosia trifida) Seeds

Published online by Cambridge University Press:  20 January 2017

Eric R. Page*
Affiliation:
Agriculture and Agri-Food Canada, Greenhouse and Processing Crops Research Centre, 2585 County Road 20, Harrow, ON, Canada, N0R 1G0
Robert E. Nurse
Affiliation:
Agriculture and Agri-Food Canada, Greenhouse and Processing Crops Research Centre, 2585 County Road 20, Harrow, ON, Canada, N0R 1G0
*
Corresponding author's email: [email protected].

Abstract

Giant ragweed has become an increasingly important weed of arable land in many parts of North America. It is now a common weed of row crop production systems, a fact that can be attributed to earlier crop planting dates, reduced tillage, and the development of resistance to Group 2 and 9 herbicides. The propagation of giant ragweed seedlings for experimental purposes is a lengthy process because up to 90 d of stratification is often required to alleviate primary seed dormancy. The objective of this research was to evaluate physical, chemical, and cold stratification methods for alleviating seed dormancy in giant ragweed and reducing the length of cold stratification required. Results indicate that the most effective method for alleviating dormancy in seed of giant ragweed is to excise the embryo from its covering structures. By excising the embryo, 96% of viable giant ragweed seeds germinated with no stratification. In contrast, untreated seeds required a minimum of 6 wk of stratification to alleviate dormancy in a similar proportion of the population. Although excising embryos requires time and effort, the time savings relative to stratification make it an attractive method for propagating giant ragweed seedlings.

Ambrosia trifida se ha convertido en una maleza cada vez más importante en terrenos arables en muchas partes de Norteamérica. Esta maleza es ahora común en sistemas de producción de cultivos, un hecho que puede ser atribuido a fechas de siembra de cultivos más tempranas, labranza reducida, y el desarrollo de resistencia a herbicidas de los Grupos 2 y 9. La propagación de plántulas de A. trifida para fines experimentales es un proceso largo porque frecuentemente se requieren hasta 90 d de estratificación para aliviar la dormición primaria de la semilla. El objetivo de esta investigación fue evaluar métodos físicos, químicos, y de estratificación con frío para aliviar la dormición de la semilla en A. trifida y así reducir la duración de la estratificación con frío requerida. Los resultados indican que el método más efectivo para aliviar la dormición en semillas de A. trifida es extraer el embrión de las estructuras de cobertura de la semilla. Al extraer el embrión, 96% de las semillas viables de A. trifida germinaron en ausencia de estratificación. En contraste, semillas sin tratamiento requirieron un mínimo de 6 semanas de estratificación para aliviar la dormición en una proporción similar de la población. Aunque extraer los embriones requiere tiempo y esfuerzo, el ahorro relativo de tiempo en comparación con la estratificación, hace este método atractivo para la propagación de plántulas de A. trifida.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abul-Fatih, HA, Bazzaz, FA, Hunt, R (1979) The biology of Ambrosia trifida L. New Phytol 83:829838 Google Scholar
Alex, JF (1964) Weeds of tomato and corn fields in two regions of Ontario. Weed Res 4:308318 Google Scholar
Amatangelo, JR (1974) Infestation of seeds of Ambrosia trifida, giant ragweed, by larval insects. Bios 45:1518 Google Scholar
Ballard, TO, Foley, ME, Bauman, TT (1996) Germination, viability, and protein changes during cold stratification of giant ragweed (Ambrosia trifida L.) seed. Plant Physiol 149:229232 Google Scholar
Baskin, CC, Baskin, JM (2001) Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination. San Diego, CA: Academic Press. 665 pGoogle Scholar
Baskin, JM, Baskin, CC (2004) A classification system for seed dormancy. Seed Sci Res 14:116 Google Scholar
Basset, IJ, Crompton, CW (1982) The biology of Canadian weeds. 55. Ambrosia trifida L. Can J Plant Sci 62:10031010 Google Scholar
Brown, RF (1987) Germination of Aristida armata under constant and alternating temperatures and its analysis with the cumulative Weibull distribution as a model. Aust J Bot 35:581591.Google Scholar
Brown, RF, Mayer, DG (1988) Representing cumulative germination. 2. The use of the Weibull function and other empirically derived curves. Ann Bot 61:127138 Google Scholar
Davis, WE (1930) Primary dormancy, after-ripening, and the development of secondary dormancy in embryos of Ambrosia trifida . Am J Bot 17:5876 Google Scholar
Dinelli, G, Marotti, I, Catizone, P, Bosi, S, Tanveer, A, Abbas, RN, Pavlovic, D (2013) Germination ecology of Ambrosia artemisiifolia L. and Ambrosia trifida L. biotypes suspected of glyphosate resistance. Cent Eur J Biol 8:286296 Google Scholar
Dubey, SYD (1967) Normal and Weibull distributions. Naval Research Logistics Quarterly 14: 6979 Google Scholar
Finch-Savage, WE, Leubner-Metzger, G (2006) Seed dormancy and the control of germination. New Phytol 171:501523 Google Scholar
Gibson, KD, Johnson, WG, Hillger, DE (2005) Farmer perception of problematic corn and soybean weeds in Indiana. Weed Tech 19:10651070 Google Scholar
Heap, I (2014) The International Survey of Herbicide Resistant Weeds. http://www.weedscience.org. Accessed March 21, 2014Google Scholar
Johnson, WG, Davis, VM, Kruger, GR, Weller, SC (2009) Influence of glyphosate-resistant cropping systems on weed species shifts and glyphosate-resistant weed populations. Eur J Agron 31:162172 Google Scholar
Patzoldt, WL, Tranel, PJ (2002) Molecular analysis of cloransulam resistance in a population of giant ragweed. Weed Sci 50:299305 Google Scholar
Peters, J, ed (2000) Tetrazolium testing handbook Contribution No.29 to the Handbook on Seed Testing. First revision. Lincoln, NE: Association of Official Seed Analysts Google Scholar
Schutte, BJ (2007) Biology and Ecology of Ambrosia trifida L. Seedling Emergence. Ph.D dissertation. Columbus, OH: The Ohio State University. 164 pGoogle Scholar
Schutte, BJ, Regnier, EE, Harrison, SK (2012) Seed dormancy and adaptive seedling emergence timing in giant ragweed (Ambrosia trifida). Weed Sci 60:1926 Google Scholar
Vink, J, Soltani, N, Robinson, DE, Tardif, FJ, Lawton, MB, Sikkema, PH (2013) Occurrence and distribution of glyphosate-resistant giant ragweed (Ambrosia trifida L.) in southwestern Ontario. Can J Plant Sci 92:533539 Google Scholar
Warwick, SI, Black, LD (1988). The biology of Canadian weeds.90. Abutilon theophrasti . Can J Plant Sci 68:10691085 Google Scholar
Weaver, SE (2001) The biology of Canadian weeds. 115. Conyza canadensis . Can J Plant Sci 81:867875 Google Scholar
Weibull, W (1951) A statistical distribution function of wide applicability. J Appl Mech 18:293297 Google Scholar
Winter, DM (1960) The development of the seed of Abutilon theophrasti. II. Seed coat. Am J Bot 47:157162 Google Scholar