Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T22:25:42.645Z Has data issue: false hasContentIssue false

Acetolactate Synthase (ALS) Inhibitor-Resistant Wild Buckwheat (Polygonum convolvulus) in Alberta

Published online by Cambridge University Press:  20 January 2017

Hugh J. Beckie*
Affiliation:
Agriculture and Agri-Food Canada (AAFC), Saskatoon Research Centre, 107 Science Place, Saskatoon, Saskatchewan, Canada S7N 0X2
Suzanne I. Warwick
Affiliation:
AAFC, Eastern Cereal and Oilseed Research Centre, K.W. Neatby Building, Central Experimental Farm, Ottawa, Ontario, Canada K1A 0C6
Connie A. Sauder
Affiliation:
AAFC, Eastern Cereal and Oilseed Research Centre, K.W. Neatby Building, Central Experimental Farm, Ottawa, Ontario, Canada K1A 0C6
*
Corresponding author's E-mail: [email protected]

Abstract

Wild buckwheat is the most abundant broadleaf weed across the Prairie region of western Canada. Acetolactate synthase (ALS)-inhibiting herbicides are commonly used to control this species and other broadleaf weeds in cereal crops. A field survey in Alberta in 2007 identified a single population that was putatively resistant to ALS-inhibiting herbicides. In herbicide resistance screening in the greenhouse, all F1 progeny tested were resistant to the ALS-inhibiting herbicides thifensulfuron/tribenuron, a sulfonylurea herbicide, or florasulam, a triazolopyrimidine herbicide; dose response of shoot biomass indicated the population was 10- and 20-fold less sensitive to thifensulfuron/tribenuron and florasulam, respectively, than a susceptible control population. ALS gene sequencing of 24 F1 progeny indicated that the Trp574Leu target-site mutation was responsible for conferring ALS-inhibitor resistance in this biotype, the first global report of ALS-inhibitor resistance for this species. Because this mutation typically endows high-level resistance across all five ALS-inhibitor classes, this wild buckwheat biotype may only be controlled by a different site-of-action herbicide.

Polygonum convolvulus es la maleza de hoja ancha más abundante a lo largo de la región Pradera del occidente de Canadá. Los herbicidas inhibidores de la Acetolactate synthase (ALS) son comúnmente usados para controlar esta especie y otras malezas de hoja ancha en el cultivo de cereales. Una investigación de campo realizada en Alberta en 2007, identificó una sola población que era putativamente resistente a los herbicidas inhibidores ALS. En la evaluación de resistencia a los herbicidas en el invernadero, toda la progenie F1 evaluada fue resistente a los herbicidas inhibidores ALS thifensulfuron/tribenuron, un herbicida sulfonylurea, o florasulam, un herbicida triazolopyrimidine. La respuesta a dosis de la biomasa de la parte aérea de las plantas, indicó que la población fue 10 y 20 veces menos sensible a thifensulfuron/tribenuron y florasulam, respectivamente, que una población susceptible testigo. La secuencia genética ALS de 24 descendientes F1 indicó que la mutación del sitio de acción -Trp574Leu fue responsable de conferir la resistencia al inhibidor ALS para este biotipo, siendo este el primer reporte global de resistencia al inhibidor ALS para esta especie. Ya que esta mutación, típicamente confiere un nivel alto de resistencia entre todas las cinco clases de inhibidores ALS, este biotipo de P. convolvulus podría ser controlado únicamente por un herbicida con un sitio de acción diferente.

Type
Notes
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Beckie, H. J., Lozinski, C., and Shirriff, S. 2009. Alberta Weed Survey of Herbicide-Resistant Weeds in 2007. Weed Survey Series Publ 09-1. Saskatoon, SK Agriculture and Agri-Food Canada. 36 p.Google Scholar
Beckie, H. J. and Tardif, F. J. 2011. Herbicide cross resistance in weeds. Crop Prot. (in press).Google Scholar
Diebold, R. S., McNaughton, K. E., Lee, E. A., and Tardif, F. J. 2003. Multiple resistance to imazethapyr and atrazine in Powell amaranth (Amaranthus powellii). Weed Sci. 51:312318.Google Scholar
Forsberg, D. E. and Best, K. F. 1964. The emergence and plant development of wild buckwheat (Polygonum convolvulus L.). Can. J. Plant Sci. 44:100103.CrossRefGoogle Scholar
Friesen, G. and Shebeski, L. H. 1960. Economic losses caused by weed competition in Manitoba grain fields. I. Weed species, their relative abundance and their effect on crop yields. Can. J. Plant Sci. 40:457467.Google Scholar
Gomez, K. A. and Gomez, A. A. 1984. Statistical Procedures for Agricultural Research. 2nd ed. New York John Wiley. 680 p.Google Scholar
Hume, L., Martinez, J., and Best, K. 1983. The biology of Canadian weeds. 60. Polygonum convolvulus L. Can. J. Plant Sci. 63:959971.Google Scholar
Leeson, J. Y. and Neeser, C. 2011. A preview of residual weed population shifts in Alberta—1970s to 2010. Proceedings of the 2010 National Meeting. Pinawa, MB Canadian Weed Science Society.Google Scholar
Leeson, J. Y., Thomas, A. G., Brenzil, C. A., and Beckie, H. J. 2006. Do Saskatchewan producers reduce in-crop herbicide rates? Proceedings of the 2004 National Meeting. Pinawa, MB Canadian Weed Science Society.Google Scholar
Leeson, J. Y., Thomas, A. G., Hall, L. M., Brenzil, C. A., Andrews, T., Brown, K. R., and Van Acker, R. C. 2005. Prairie Weed Surveys of Cereal, Oilseed and Pulse crops from the 1970s to the 2000s. Weed Survey Series Publ. 05-1. Saskatoon, Saskatchewan Agriculture and Agri-Food Canada. 395 p.Google Scholar
Neururer, H. 1961. Weeds which hinder combine harvesting. Pflanzenarzt 14:6163.Google Scholar
[SAS] Statistical Analysis Systems. 1999. SAS/STAT User's Guide. Version 8. Cary, NC Statistical Analysis Systems Institute. 1243 p.Google Scholar
Sathasivan, K., Haughn, G. W., and Murai, N. 1990. Nucleotide sequence of a mutant acetolactate synthase gene from imidazolinone resistant Arabidopsis thaliana var. Columbia. Nucleic Acids Res. 18:2188.Google Scholar
Steel, G. D. and Torrie, J. H. 1980. Principles and Procedures of Statistics: A Biometrical Approach. 2nd ed. New York McGraw-Hill. 633 p.Google Scholar
Tranel, P. J., Wright, T. R., and Heap, I. M. 2011. ALS mutations from herbicide-resistant weeds. http://www.weedscience.org. Accessed: May 10, 2011.Google Scholar
Van Acker, R. C. 2009. Weed biology serves practical weed management. Weed Res. 49:15.Google Scholar
Warwick, S. I., Sauder, C. A., and Beckie, H. J. 2010. Acetolactate synthase (ALS) target-site mutations in ALS inhibitor-resistant Russian thistle (Salsola tragus). Weed Sci. 58:244251.Google Scholar
Warwick, S. I., Xu, R., Sauder, C., and Beckie, H. J. 2008. Acetolactate synthase target-site mutations and single nucleotide polymorphism genotyping in ALS-resistant kochia (Kochia scoparia). Weed Sci. 56:797806.Google Scholar
Yoshimura, Y., Beckie, H. J., and Matsuo, K. 2006. Transgenic oilseed rape along transportation routes and port of Vancouver in western Canada. Environ. Biosafety Res. 5:6775.Google Scholar