Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-13T00:55:36.725Z Has data issue: false hasContentIssue false

Weeds, seeds, and buds—opportunities and systems for dormancy investigations

Published online by Cambridge University Press:  20 January 2017

Michael E. Foley*
Affiliation:
USDA-Agricultural Research Service, Biosciences Research Laboratory, Plant Science Research, Fargo, ND 58105-5674; [email protected]

Abstract

Dormancy is a critical factor for the survival and persistence of weedy species. Contemporary approaches can be used to identify genes that regulate dormancy directly or indirectly to elucidate key mechanisms, signals, and pathways. Several domesticated plant species have been used as model systems to mark quantitative trait loci (QTL) that affect dormancy in seeds and vegetative propagules directly. A few weedy species have also been used to mark QTL and to determine dormancy genes using microarray analysis. Given the number of serious weeds worldwide and the role that dormancy plays in their persistence, developing fundamental knowledge on dormancy is an important step toward developing new strategies for weed management. This paper describes current research and outlines some weeds that might be candidates for dormancy investigations using molecular genetic and genomics approaches. An underlying theme in the selection of weeds for dormancy investigations is their relation to crop species and the ability to adapt existing resources to investigate dormancy in weedy plants.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alonso-Blanco, C., Peeters, A.J.M., Koornneef, M., Lister, C., Dean, C., van den Bosch, N., Pot, J., and Kuiper, M.T.R. 1998. Development of an AFLP based linkage map of Ler, Col and Cvi Arabidopsis thaliana ecotypes and construction of a Ler/Cvi recombinant inbred line population. Plant J. 12:259271.Google Scholar
Alpert, K. B., Grandillo, S., and Tanksley, S. D. 1995. fw2.2: a major QTL controlling fruit weight is common to both red- and green-fruited tomato species. Theor. Appl. Genet. 91:9941,000.CrossRefGoogle Scholar
Alpert, K. B. and Tanksley, S. D. 1996. High resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2: a major fruit weight quantitative trait locus in tomato. Proc. Natl. Acad. Sci. USA 93:15,50315,507.CrossRefGoogle Scholar
Anderson, J. V. and Horvath, D. P. 2001. Random sequencing of cDNAs and identification of mRNAs. Weed Sci. 49:590597.CrossRefGoogle Scholar
Anonymous. 2001a. Arabidopsis Biological Resources Center (ARBC). Available at http://www.biosci.ohio-state.edu/∼plantbio/Facilities/abrc/abrchome.htm. Accessed August 21, 2001.Google Scholar
Anonymous. 2001b. Nottingham Arabidopsis Seedstock Center (NASC). Available at http://nasc.nott.ac.uk. Accessed August 21, 2001.Google Scholar
Anonymous. 2001c. National Plant Germplasm System (NPGS). Available at http://www.ars-grin.gov/npgs. Accessed August 22, 2001.Google Scholar
Anonymous. 2001d. International Rice Research Institute (IRRI). Available at http://www.cgiar.org/irri/Index.htm. Accessed August 22, 2001.Google Scholar
Anonymous. 2001e. The Institute for Genomic Research (TIGR) Rice Genome Project. Available at http://www.tigr.org/tdb/rice. Accessed August 22, 2001.Google Scholar
Anonymous. 2001f. Rice—Welcome to RiceGenes Available at http://ars-genome.cornell.edu/rice. Accessed August 22, 2001.Google Scholar
Anonymous. 2001g. Clemson University Genomics Institute (CUGI) Rice Projects. Available at http://www.genome.clemson.edu/projects/rice/index.html. Accessed August 22, 2001.Google Scholar
Anonymous. 2001h. Rice Genome Research Program (RGP). Available at http://rgp.dna.affrc.go.jp. Accessed August 22, 2001.Google Scholar
Anonymous. 2001i. Monsanto Rice Research. Available at http://www.rice-research.org. Accessed August 22, 2001.Google Scholar
Anonymous. 2001j. NCBI dbEST database of “Expressed Sequence Tags.” Available at http://www.ncbi.nlm.nih.gov/dbEST/dbEST_summary.html. Accessed August 22, 2001.Google Scholar
Anonymous. 2001k. The Institute for Genomic Research (TIGR) NSF Functional Potato Genomics. Available at http://www.tigr.org/tdb/potato. Accessed August 23, 2001.Google Scholar
Anonymous. 2001l. Sorghum DB Home Page. Available at http://algodon.tamu.edu/sorghumdb.html. Accessed August 23, 2001.Google Scholar
Anonymous. 2001m. Sorghum Fingerprints. Available at http://www.genome.clemson.edu/projects/sorghum/fpc. Accessed August 23, 2001.Google Scholar
Anonymous. 2001n. The Institute for Genomic Research (TIGR) Sorghum bicolor Gene Index (SbGI). Available at http://www.tigr.org/tdb/sbgi. Accessed August 23, 2001.Google Scholar
Anonymous. 2001o. International Triticeae EST Cooperative (ITEC). Available at http://wheat.pw.usda.gov/genome/index.html. Accessed August 23, 2001.Google Scholar
Anonymous. 2001p. Project Summary—Comparative Genomics of Domestication Traits in Lettuce and Sunflower. Available at http://veghome.ucdavis.edu/faculty/michelmore/projectsummary.htm. Accessed August 23, 2001.Google Scholar
Arumuganathan, K. and Earle, E. D. 1991. Nuclear DNA content of some important plant species. Plant Mol. Biol. Rep. 9:208218.CrossRefGoogle Scholar
Baker, H. G. 1974. The evolution of weeds. Annu. Rev. Ecol. Syst. 5:124.Google Scholar
Barry, G. F. 2001. The use of the Monsanto draft rice genome sequence in research. Plant Physiol. 125:11641165.Google Scholar
Bentsink, L., Alonso-Blanco, C., Vreugdenhil, D., Tesnier, K., Groot, S.P.C., and Koornneef, M. 2000. Genetic analysis of seed-soluble oligosaccharides in relation to seed storability of Arabidopsis. Plant Physiol. 124:15951604.Google Scholar
Buhler, D. D. and Hoffman, M. L. 1999. Andersen's Guide to Practical Methods of Propagating Weeds and Other Plants. Lawrence, KS: Weed Science Society of America. p. 10, 18–19.Google Scholar
Cai, H. W. and Morishima, H. 2000. Genomic regions affecting seed shattering and seed dormancy in rice. Theor. Appl. Genet. 100:840846.Google Scholar
Chao, W. 2002. Contemporary methods to investigate seed and bun dormancy. Weed Sci. 50:215226.CrossRefGoogle Scholar
Cho, Y.-C., Chung, T.-Y., and Suh, H.- S. 1995. Genetic characteristics of Korean weedy rice (Oryza sativa L.) by RFLP analysis. Euphytica 86:103110.CrossRefGoogle Scholar
Cohn, M. A. 2002. Seed dormancy in red rice. A balance of logic and luck. Weed Sci. 50:261266.Google Scholar
Dekker, J., Dekker, B., Hilhorst, H., and Karssen, C. 1996. Weedy adaptation in Setaria spp. IV. Changes in the germinative capacity of S. faberii (Poaceae) embryos with development from anthesis to after abscission. Am. J. Bot. 83:979991.CrossRefGoogle Scholar
Devos, K. M. and Gale, M. D. 1997. Comparative genetics in the grasses. Plant Mol. Biol. 35:315.CrossRefGoogle ScholarPubMed
Donald, W. W. 1994. The biology of Canada thistle (Cirsium arvense L.). Rev. Weed Sci. 6:77101.Google Scholar
Frary, A., Nesbitt, T. C., Grandillo, S., et al. 2000. fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:8588.CrossRefGoogle Scholar
Freyre, R., Warnke, S., Sosinski, B., and Douches, D. S. 1994. Quantitative trait locus analysis of tuber dormancy in diploid potato (Solanum spp.). Theor. Appl. Genet. 89:474480.CrossRefGoogle ScholarPubMed
Giraudat, J., Hauge, B. M., Valon, C., Smalle, J., Parcy, F., and Goodman, H. M. 1992. Isolation of the Arabidopsis ABI3 gene by positional cloning. Plant Cell 4:12511261.Google ScholarPubMed
Gu, X. and Foley, M. E. 2001. Inheritance of seed dormancy in weedy rice (Oryza sativa L.). Abstr. Am. Soc. Plant Biol. p. 67.Google Scholar
Holm, L.G. Plucknett, D. L., Pancho, J. V., and Herberger, J. P. 1977. The World's Worst Weeds, Distribution and Biology. Honolulu, HI: The University Press of Hawaii. 622 p.Google Scholar
Horvath, D.P. and Anderson, J. V. 2002. A molecular approach to understanding root bud dormancy in leafy spurge. Weed Sci. 50:227231.CrossRefGoogle Scholar
Kaul, S., Koo, H. L., Jenkins, J., and Somerville, C., et al. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana . Nature 408:796815.Google Scholar
Koornneef, M., Alonso-Blanco, C., Bentsink, L., Blankestijn de Vries, H., Debeaujon, I., Hanhart, C. J., Leon-Kloosterziel, K. M., Peeters, A.J.M., and Raz, V. 2000. The genetics of seed dormancy in Arabidopsis thaliana . Pages 365373 In Viémont, J.-D. and Crabbé, J., eds. Dormancy in Plants. New York: CABI Publishing.Google Scholar
Koornneef, M. and Karssen, C. M. 1994. Seed dormancy and germination. Pages 313334 In Koornneef, M. and Karssen, C. M., eds. Arabidopsis. Cold Springs, NY: Cold Springs Harbor Laboratory Press.Google Scholar
Lan, X. J., Liu, D. C., and Wang, Z. R. 1997. Inheritance in synthetic hexaploid wheat ‘RPS’ of sprouting tolerance derived from Aegilops tauschii Cosson. Euphytica 95:321323.Google Scholar
Li, Y., Jia, J. Z., Wang, Y., and Wu, S. Z. 1998. Intraspecific and interspecific variation in Setaria revealed by RAPD analysis. Genet. Res. Crop Evol. 45:279285.CrossRefGoogle Scholar
Lin, S. Y., Sasaki, T., and Yano, M. 1998. Mapping quantitative trait loci controlling seed dormancy and heading date in rice, Oryza sativa L., using backcross inbred lines. Theor. Appl. Genet. 96:9971003.Google Scholar
Meyerowitz, E. M. 1994. Plant developmental biology: green genes for the 21st century. BioEssays 16:621625.CrossRefGoogle Scholar
Neeser, C., Aguero, R., and Swanton, C. J. 1997. Survival and dormancy of purple nutsedge (Cyperus rotundus) tubers. Weed Sci. 45:784790.CrossRefGoogle Scholar
Nissen, S. J. and Foley, M. E. 1987. Euphorbia esula L. root and root bud indole-3-acetic acid levels at three phenologic stages. Plant Physiol. 84:287290.Google Scholar
Paterson, A. H., Bowers, J. E., Burow, M. D., et al. 2000. Comparative genomics of plant chromosomes. Plant Cell 12:15231539.Google Scholar
Paterson, A. H., Lan, T. H., Reischmann, K. P., et al. 1996. Toward a unified genetic map of higher plants, transcending the monocot-dicot divergence. Nature Genet. 14:380382.CrossRefGoogle Scholar
Paterson, A. H., Lin, Y.-R., Li, Z., Schertz, K. F., Doebley, J. F., Pinson, S.R.M., Liu, S.-C., Stansel, J. W., and Irving, J. E. 1995b. Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science 269:17141718.CrossRefGoogle ScholarPubMed
Paterson, A. H., Schertz, K. F., Lin, Y. R., Liu, S. C., and Chang, Y. L. 1995a. The weediness of wild plants: molecular analysis of genes influencing dispersal and persistence of johnsongrass, Sorghum halepense (L) Pers. Proc. Natl. Acad. Sci. USA 92:6,1276,131.CrossRefGoogle ScholarPubMed
Richmond, T. and Somerville, S. 2000. Chasing the dream: plant EST microarrays. Curr. Opin. Plant Biol. 3:108116.CrossRefGoogle ScholarPubMed
Simpson, G. M. 1990. Seed Dormancy in Grasses. New York: Cambridge University Press. 297 p.Google Scholar
Song, W.-Y., Wang, G.-L., Chen, L.-L., et al. 1995. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21 . Science 270:18041806.CrossRefGoogle ScholarPubMed
Sun, T., Goodman, H. M., and Ausubel, F. M. 1992. Cloning the Arabidopsis GA1 locus by genomic subtraction. Plant Cell 4:119128.Google Scholar
van den Berg, J. H., Ewing, E. E., Plaisted, R. L., McMurry, S., and Bonierbale, M. W. 1996. QTL analysis of potato tuber dormancy. Theor. Appl. Genet. 93:317324.Google Scholar
Viémont, J.-D. and Crabbé, J., eds. 2000. Dormancy in Plants. New York: CABI Publishing. pp. xiii-xiv.Google Scholar
Walker-Simmons, M. K., Doherty, L. C., Wagner, R. W., Ambrose, S., and Abrams, S. R. 2001. Molecular and biochemical regulation of wheat seed dormancy. Weed Sci. Soc. Am. Abstr. 41:101.Google Scholar
Wan, J., Nakazaki, T., Kawaura, K., and Ikehashi, H. 1997. Identification of marker loci for seed dormancy in rice (Oryza sativa L.). Crop Sci. 37:17591763.CrossRefGoogle Scholar
Wang, Z. M., Devos, K. M., Liu, C. J., Wang, R. Q., and Gale, M. D. 1998. Construction of RFLP-based maps of foxtail millet, Setaria italica (L.) P. Beauv. Theor. Appl. Genet. 96:3136.Google Scholar
Yuan, Q. P., Quackenbush, J., Sultana, R., Pertea, M., Salzberg, S. L., and Buell, C. R. 2001. Rice bioinformatics. Analysis of rice sequence data and leveraging the data to other plant species. Plant Physiol. 125:11661174.Google Scholar
Zemetra, R. S., Hansen, J., and Mallory-Smith, C. A. 1998. Potential for gene transfer between wheat (Triticum aestivum) and jointed goatgrass (Aegilops cylindrica). Weed. Sci. 46:313317.Google Scholar