Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T00:59:22.128Z Has data issue: false hasContentIssue false

Weed resistance to acetyl coenzyme A carboxylase inhibitors: an update

Published online by Cambridge University Press:  20 January 2017

Christophe Délye*
Affiliation:
UMR Biologie et Gestion des Adventices, Institut National de la Recherche Agronomique, BP 86510, F-21065 Dijon cédex, France; [email protected]

Abstract

Herbicides targeting grass plastidic acetyl coenzyme A carboxylase (ACC) are effective selective graminicides. Their intensive use worldwide has selected for resistance genes in a number of grass weed species. Biochemistry and molecular biology have been the means of determining the herbicidal activity and selectivity toward crop plants of ACC-inhibiting herbicides. In recent years, elucidation of the tridimensional structure of ACC and identification of five amino acid residues within the ACC carboxyl transferase domain that are critical determinants for herbicide sensitivity shed light on the basis of ACC-based resistance to herbicides. However, metabolism-based resistance to ACC-inhibiting herbicides is much less well known, although this type of resistance seems to be widespread. A number of genes thus endow resistance to ACC-inhibiting herbicides, with the possibility for various resistance genes that confer dominant resistance at the herbicide field rate to accumulate within a single weed population or plant. This, together with a poor knowledge of the genetic parameters driving resistance, renders the evolution of resistance to ACC-inhibiting herbicides unpredictable. Future research should consider developing tactics to slow the spread of resistance. For this purpose, it is crucial that our understanding of metabolism-based resistance improves rapidly because this mechanism is complex and can confer resistance to herbicides with different target sites.

Type
Special Topics
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alban, C., Baldet, P., and Douce, R. 1994. Localization and characterization of two structurally different forms of acetyl-CoA carboxylase in young pea leaves, of which one is sensitive to aryloxyphenoxypropionate herbicides. Biochem J 300:557565.Google Scholar
Andrews, T. S., Morrison, I. N., and Penner, G. A. 1998. Monitoring the spread of ACCase inhibitor resistance among wild oat (Avena fatua) patches using AFLP analysis. Weed Sci 46:196199.Google Scholar
Anonymous. 1998. “Herbicide resistance” and “herbicide tolerance” defined. Weed Technol 12:789.Google Scholar
Anonymous. 2004. Herbicide resistance action committee. www.plantprotection.org/HRAC. Accessed October 11, 2004.Google Scholar
Ashton, A. R., Jenkins, C. L. D., and Whitfeld, P. R. 1994. Molecular cloning of two different cDNAs for maize acetyl CoA carboxylase. Plant Mol. Biol 24:3549.CrossRefGoogle ScholarPubMed
Barnes, J. W. and Oliver, L. R. 2004. Cloransulam antagonizes annual grass control with aryloxyphenoxypropionate graminicides but not cyclohexanediones. Weed Technol 18:763772.Google Scholar
Basu, C., Halfhill, M. D., Mueller, T. C., and Stewart, C. N. Jr. 2004. Weed genomics: new tools to understand weed biology. Trends Plant Sci 9:391398.Google Scholar
Beckie, H. J., Hall, L. M., Meers, S., Laslo, J. J., and Stevenson, F. C. 2004. Management practices influencing herbicide resistance in wild oat. Weed Technol 18:853859.CrossRefGoogle Scholar
Beckie, H. J., Heap, I. M., Smeda, R. J., and Hall, L. M. 2000. Screening for herbicide resistance in weeds. Weed Technol 14:428445.Google Scholar
Beckie, H. J., Thomas, A. G., Légère, A., Kelner, D. J., Van Acker, R. C., and Meers, S. 1999. Nature, occurrence, and cost of herbicide-resistant wild oat (Avena fatua) in small-grain production areas. Weed Technol 13:612625.Google Scholar
Beckie, H. J., Thomas, A. G., and Stevenson, F. C. 2002. Survey of herbicide-resistant wild oat (Avena fatua) in two townships in Saskatchewan. Can. J. Plant Sci 82:463471.Google Scholar
Betts, K. J., Ehlke, N. J., Wyse, D. L., Gronwald, J. W., and Somers, D. A. 1992. Mechanism of inheritance of diclofop resistance in italian ryegrass (Lolium multiflorum). Weed Sci 40:184189.CrossRefGoogle Scholar
Boutsalis, P. 2001. Syngenta Quick-Test: a rapid whole-plant test for herbicide resistance. Weed Technol 15:257263.Google Scholar
Bradley, K. W., Wu, J., Hatzios, K. K., and Hagood, E. S. Jr. 2001. The mechanism of resistance to aryloxyphenoxypropionate and cyclohexanedione herbicides in a johnsongrass biotype. Weed Sci 49:477484.Google Scholar
Bravin, F., Zanin, G., and Preston, C. 2001. Resistance to diclofop-methyl in two Lolium spp. populations from Italy: studies on the mechanism of resistance. Weed Res 41:461473.CrossRefGoogle Scholar
Brazier, M., Cole, D. J., and Edwards, R. 2002. O-glycosyltransferase activities towards phenolic natural products and xenobiotics in wheat and herbicide-resistant and herbicide-susceptible black-grass (Alopecurus myosuroides). Phytochemistry 59:149156.CrossRefGoogle Scholar
Burton, J. D., Gronwald, J. W., Keith, R. A., Somers, D. A., Gegenbach, B. G., and Wyse, D. L. 1991. Kinetics of inhibition of acetyl-coenzyme A carboxylase by sethoxydim and haloxyfop. Pestic. Biochem. Physiol 39:100109.CrossRefGoogle Scholar
Burton, J. D., Gronwald, J. W., Somers, D. A., Connelly, J. A., Gegenbach, B. G., and Wyse, D. L. 1987. Inhibition of plant acetyl-coenzyme A carboxylase by the herbicides sethoxydim and haloxyfop. Biochem. Biophys. Res. Commun 148:10391044.CrossRefGoogle ScholarPubMed
Catanzaro, C. J., Burton, J. D., and Skroch, W. A. 1993. Graminicide resistance of acetyl-CoA carboxylase from ornamental grasses. Pestic. Biochem. Physiol 45:147153.CrossRefGoogle Scholar
Cavan, G., Biss, P., and Moss, S. R. 1998a. Herbicide resistance and gene flow in wild-oats (Avena fatua and Avena sterilis ssp. ludoviciana). Ann. Appl. Biol 133:207217.Google Scholar
Cavan, G., Biss, P., and Moss, S. R. 1998b. Localized origins of herbicide resistance in Alopecurus myosuroides . Weed Res 38:239245.CrossRefGoogle Scholar
Cavan, G., Cussans, J., and Moss, S. 2000. Modelling different cultivation and herbicide strategies for their effect on herbicide resistance in Alopecurus myosuroides . Weed Res 40:561568.CrossRefGoogle Scholar
Cavan, G., Cussans, J., and Moss, S. 2001. Managing the risks of herbicide resistance in wild oat. Weed Sci 49:236240.Google Scholar
Chauvel, B., Guillemin, J-P., Colbach, N., and Gasquez, J. 2001. Evaluation of cropping systems for management of herbicide-resistant populations of blackgrass (Alopecurus myosuroides Huds). Crop Prot 20:127137.CrossRefGoogle Scholar
Christoffers, M. J., Berg, M. L., and Messersmith, C. G. 2002. An isoleucine to leucine mutation in acetyl-CoA carboxylase confers herbicide resistance in wild oat. Genome 45:10491056.Google Scholar
Christopher, J. T. and Holtum, J. A. M. 1998. The dicotyledonous species Erodium moschatum (L) L'Hér. ex. Aiton is sensitive to haloxyfop herbicide due to herbicide-sensitive acetyl-coenzyme A carboxylase. Planta 207:275279.Google Scholar
Christopher, J. T. and Holtum, J. A. M. 2000. Dicotyledons lacking the multisubunit form of acetyl coenzyme A carboxylase may be restricted to the family Geraniaceae. Aust. J. Plant Physiol 27:845850.Google Scholar
Cobb, A. H. and Kirkwood, R. C. 2000. Challenges for herbicide development. Pages 124 in Cobb, A. H. and Kirkwood, R. C. eds. Herbicides and Their Mechanisms of Action. Sheffield, UK: Sheffield Academic Press.Google Scholar
Cocker, K. M., Coleman, J. O. D., Blair, A. M., Clarke, J. H., and Moss, S. R. 2000. Biochemical mechanisms of cross-resistance to aryloxyphenoxypropionate and cyclohexanedione herbicides in populations of Avena spp. Weed Res 40:323334.CrossRefGoogle Scholar
Cocker, K. M., Moss, S. R., and Coleman, J. O. D. 1999. Multiple mechanisms of resistance to fenaxoprop-P-ethyl in United Kingdom and other European populations of herbicide-resistant Alopecurus myosuroides (black-grass). Pestic. Biochem. Physiol 65:169180.Google Scholar
Cocker, K. M., Northcroft, D. S., Coleman, J. O. D., and Moss, S. R. 2001. Resistance to ACCase-inhibiting herbicides and isoproturon in UK populations of Lolium multiflorum: mechanisms of resistance and implications for control. Pest Manag. Sci 57:587597.Google Scholar
Collings, L. V., Blair, A. M., Gay, A. P., Dyer, C. J., and Mackay, N. 2003. The effect of weather factors on the performance of herbicides to control Alopecurus myosuroides in winter wheat. Weed Res 43:146153.Google Scholar
Cummins, I., Cole, D. J., and Edwards, R. 1999. A role for glutathione transferases functioning as glutathione peroxidases in resistance to multiple herbicides in black-grass. Plant J 18:285292.Google Scholar
Cummins, I. and Edwards, R. 2004. Purification and cloning of an esterase from the weed black-grass (Alopecurus myosuroides), which bioactivates aryloxyphenoxypropionate herbicides. Plant J 39:894904.CrossRefGoogle ScholarPubMed
Davies, J. and Caseley, J. C. 1999. Herbicide safeners: a review. Pestic. Sci 55:10431058.3.0.CO;2-L>CrossRefGoogle Scholar
Délye, C., Calmès, É, and Matéjicek, A. 2002a. SNP markers for black-grass (Alopecurus myosuroides Huds.) genotypes resistant to acetyl CoA-carboxylase inhibiting herbicides. Theor. Appl. Genet 104:11141120.CrossRefGoogle ScholarPubMed
Délye, C., Matéjicek, A., and Gasquez, J. 2002b. PCR-based detection of resistance to acetyl-CoA carboxylase-inhibiting herbicides in black-grass (Alopecurus myosuroides Huds) and ryegrass (Lolium rigidum Gaud). Pest Manag. Sci 58:474478.CrossRefGoogle ScholarPubMed
Délye, C., Straub, C., Matéjicek, A., and Michel, S. 2004a. Multiple origins for black-grass (Alopecurus myosuroides Huds.) target site–based resistance to herbicides inhibiting acetyl-CoA carboxylase. Pest Manag. Sci 60:3541.Google Scholar
Délye, C., Straub, C., Michel, S., and Le Corre, V. 2004b. Nucleotide variability at the acetyl-coenzyme A carboxylase gene and the signature of herbicide selection in the grass weed Alopecurus myosuroides (Huds). Mol. Biol. Evol 21:884892.Google Scholar
Délye, C., Wang, T., and Darmency, H. 2002c. An isoleucine–leucine substitution in chloroplastic acetyl-Co A carboxylase from green foxtail (Setaria viridis L. Beauv.) is responsible for resistance to the cyclohexanedione herbicide sethoxydim. Planta 214:421427.Google Scholar
Délye, C., Zhang, X-Q., Chalopin, C., Michel, S., and Powles, S. B. 2003. An isoleucine residue within the carboxyl-transferase domain of multidomain acetyl-CoA carboxylase is a major determinant of sensitivity to aryloxyphenoxypropionate but not to cyclohexanedione inhibitors. Plant Physiol 132:17161723.Google Scholar
Délye, C., Zhang, X-Q., Michel, S., Matéjicek, A., and Powles, S. B. 2005. Molecular bases for sensitivity to acetyl-coenzyme A carboxylase inhibitors in black-grass. Plant Physiol 137:794806.Google Scholar
De Prado, R., González-Gutiérrez, J., Menéndez, J., Gasquez, J., Gronwald, J. W., and Giménez-Espinosa, R. 2000. Resistance to acetyl CoA carboxylase–inhibiting herbicides in Lolium multiflorum . Weed Sci 48:311318.CrossRefGoogle Scholar
De Prado, R., Osuna, M. D., and Fisher, A. J. 2004. Resistance to ACCase inhibitor herbicides in a green foxtail (Setaria viridis) biotype in Europe. Weed Sci 52:506512.CrossRefGoogle Scholar
Devine, M. D. and Shimabukuro, R. H. 1994. Resistance to acetyl coenzyme A carboxylase inhibiting herbicides. Pages 141169 in Powles, S. B. and Holtum, J.A.M. eds. Herbicide Resistance in Plants. Boca Raton, FL: CRC Press.Google Scholar
Diggle, A. J., Neve, P. B., and Smith, F. P. 2003. Herbicides used in combination can reduce the probability of herbicide resistance in finite weed populations. Weed Res 43:371382.Google Scholar
Dinelli, G., Bonetti, A., Marotti, I., Minelli, M., and Catizone, P. 2004. Characterization of Italian populations of Lolium spp. resistant and susceptible to diclofop by inter simple sequence repeat. Weed Sci 52:554563.Google Scholar
Di Tomaso, J. M. 1994. Evidence against a direct membrane effect in the mechanism of action of graminicides. Weed Sci 42:302309.Google Scholar
Egli, M. A., Gegenbach, B. G., Gronwald, J. W., Somers, D. A., and Wyse, D. L. 1993. Characterization of maize acetyl-coenzyme A carboxylase. Plant Physiol 101:499506.Google Scholar
Evenson, K. J., Gronwald, J. W., and Wyse, D. L. 1997. Isoforms of acetyl-coenzyme A carboxylase in Lolium multiflorum . Plant Physiol. Biochem 35:265272.Google Scholar
Faris, J., Sirikhachornkit, A., Haselkorn, R., Gill, B., and Gornicki, P. 2001. Chromosome mapping and phylogenetic analysis of the cytosolic acetyl-CoA carboxylase loci in wheat. Mol. Biol. Evol 18:17201733.Google Scholar
Focke, M., Gieringer, E., Schwan, S., Jänsch, L., Binder, S., and Braun, H-P. 2003. Fatty acid biosynthesis in mitochondria of grasses: malonyl-coenzyme A is generated by mitochondrial-localized acetyl-coenzyme A carboxylase. Plant Physiol 133:875884.CrossRefGoogle ScholarPubMed
Foster, D. K., Ward, P., and Hewson, R. T. 1993. Selective grass-weed control in wheat and barley based on the safener fenchlorazole-ethyl. Pages 12671272 in British Crop Protection Council ed. Proceedings of the Brighton Crop Protection Conference—Weeds. Surrey, Great Britain, British Crop Protection Council.Google Scholar
Friesen, L. F., Jones, T. L., Van Hacker, R. C., and Morrison, I. N. 2000. Identification of Avena fatua populations resistant to imazamethabenz, flamprop and fenoxaprop-P. Weed Sci 48:532540.Google Scholar
Frova, C. 2003. The plant glutathione transferase gene family: genomic structure, functions, expression and evolution. Physiol. Plant 119:469479.Google Scholar
Gerwick, B. C., Jackson, L. A., Handly, J., Gray, N. R., and Russell, J. W. 1988. Pre-emergence and post-emergence activities of the (R) and (S)-enantiomers of haloxyfop. Weed Sci 36:453456.Google Scholar
Gornicki, P., Faris, J., King, I., Podkowinski, J., Gill, B., and Haselkorn, R. 1997. Plastid-localised acetyl-CoA carboxylase of bread wheat is encoded by a single gene on each of the three ancestral chromosome sets. Proc. Natl. Acad. Sci. USA 94:1417914184.CrossRefGoogle Scholar
Gornicki, P. and Haselkorn, R. 1993. Wheat acetyl-CoA carboxylase. Plant Mol. Biol 22:547552.CrossRefGoogle ScholarPubMed
Gressel, J. 1990. Need herbicide resistance have evolved? Generalizations from around the world. Pages 173184 in Heap, J. W. ed. Proceedings of the 9th Australian Weeds Conference. Adelaide, Australia: Crop Science Society of South Australia.Google Scholar
Gronwald, J. W., Eberlein, C. V., Betts, K. J., Baerg, R. J., Ehlke, N. J., and Wyse, D. L. 1992. Mechanism of diclofop resistance in an Italian ryegrass (Lolium multiflorum Lam.) biotype. Pestic. Biochem. Physiol 44:126139.Google Scholar
Hadfield, S. T., Wilson, A., Kuet, S. F., and Mason, R. 1994. The metabolism of tralkoxydim in field-grown spring wheat and maize plant cell suspension culture. Pestic. Sci 40:193200.Google Scholar
Hall, L. M., Moss, S. R., and Powles, S. B. 1997. Mechanisms of resistance to aryloxyphenoxypropionate herbicides in two resistant biotypes of Alopecurus myosuroides (blackgrass): herbicide metabolism as a cross-resistance mechanism. Pestic. Biochem. Physiol 57:8798.Google Scholar
Harwood, J. L. 1988. Fatty acid metabolism. Annu. Rev. Plant Physiol 39:101138.CrossRefGoogle Scholar
Harwood, J. H. Jr., Petras, S. F., and Shelly, L. D. et al. 2003. Isozyme-nonselective N-substituted bipiperidylcarboxamide acetyl-CoA carboxylase inhibitors reduce tissue malonyl-CoA concentrations, inhibit fatty acid synthesis, and increase fatty acid oxidation in cultured cells and in experimental animals. J. Biol. Chem 278:3709937111.CrossRefGoogle ScholarPubMed
Hatzios, K. K. and Burgos, N. R. 2004. Metabolism-based herbicide resistance: regulation by safeners. Weed Sci 52:454467.Google Scholar
Heap, I. M. 2004. International survey of herbicide resistant weeds. www.weedresearch.com. Accessed December 7, 2004.Google Scholar
Heap, I. M. and Morrison, I. N. 1996. Resistance to aryloxyphenoxypropionate and cyclohexanedione herbicides in green foxtail (Setaria viridis). Weed Sci 44:2530.Google Scholar
Herbert, D., Cole, D. J., Pallett, K. E., and Harwood, J. L. 1996a. Susceptibilities of different test systems from maize (Zea mays), Poa annua and Festuca rubra to herbicides that inhibit the enzyme acetyl-coenzyme A carboxylase. Pestic. Biochem. Physiol 55:129139.Google Scholar
Herbert, D., Price, L. J., Alban, C., Dehaye, L., Job, D., Cole, D. J., Pallett, K. E., and Harwood, J. L. 1996b. Kinetic studies on two isoforms of acetyl-CoA carboxylase from maize leaves. Biochem. J 318:9971006.Google Scholar
Hidayat, I. and Preston, C. 1997. Enhanced metabolism of fluazifop acid in a biotype of Digitaria sanguinalis resistant to the herbicide fluazifop-p-butyl. Pestic. Biochem. Physiol 57:137146.Google Scholar
Hill, B. D., Stobbe, E. H., and Jones, B. L. 1978. Hydrolysis of the herbicide benzoylprop-ethyl by wild oat esterase. Weed Res 18:149154.Google Scholar
Holtum, J. A. M., Häusler, R. E., Devine, M. D., and Powles, S. B. 1994. Recovery of transmembrane potentials in plants resistant to aryloxyphenoxypropionate herbicides: a phenomenon awaiting explanation. Weed Sci 42:293301.Google Scholar
Huang, S., Sirikhachornkit, A., Faris, J. D., Su, X., Gill, B. S., Haselkorn, R., and Gornicki, P. 2002. Phylogenetic analysis of the acetyl-CoA carboxylase and 3-phosphoglycerate kinase in wheat and other grasses. Plant Mol. Biol 48:805820.Google Scholar
Incledon, B. J. and Hall, J. C. 1997. Acetyl-coenzyme A carboxylase: quaternary structure and inhibition by graminicidal herbicides. Pestic. Biochem. Physiol 57:255271.CrossRefGoogle Scholar
Jasieniuk, M., Brûlé-Babel, A. L., and Morrison, I. N. 1996. The evolution and genetics of herbicide resistance in weeds. Weed Sci 44:176193.CrossRefGoogle Scholar
Jeffcoat, B. and Harries, W. N. 1973. Selectivity and mode of action of ethyl (±)-2-(N-benzoyl-3,4-dichloroanilino)propionate in the control of Avena fatua in cereals. Pestic. Sci 4:891899.Google Scholar
Jelenska, J., Sirikhachornkit, A., Haselkorn, R., and Gornicki, P. 2002. The carboxyltransferase activity of the apicoplast acetyl-CoA carboxylase of Toxoplasma gondii is the target of aryloxyphenoxypropionate inhibitors. J. Biol. Chem 277:2320823215.CrossRefGoogle ScholarPubMed
Joachimiak, M., Tevzadze, G., Podkowinski, J., Haselkorn, R., and Gornicki, P. 1997. Wheat cytosolic acetyl-CoA carboxylase complements an ACC1 null mutation in yeast. Proc. Natl. Acad. Sci. USA 94:99909995.Google Scholar
Kibite, S., Harker, K. N., and Brown, P. D. 1995. Inheritance of resistance to diclofop-methyl and fenoxaprop-p-ethyl in two Avena sativa × A. fatua populations. Can. J. Plant Sci 75:8185.Google Scholar
Konishi, T. and Sasaki, Y. 1994. Compartimentalization of two forms of acetyl-CoA carboxylase in plants and the origin of their tolerance towards herbicides. Proc. Natl. Acad. Sci. USA 91:35983601.Google Scholar
Konishi, T., Shinohara, K., Yamada, K., and Sasaki, Y. 1996. Acetyl-CoA carboxylase in higher plants: most plants other than gramineae have both the prokaryotic and the eukaryotic forms of this enzyme. Plant Cell Physiol 37:117122.CrossRefGoogle ScholarPubMed
Kreuz, K., Tommasini, R., and Martinoia, E. 1996. Old enzymes for a new job. Herbicide detoxification in plants. Plant Physiol 111:349353.Google Scholar
Kuk, Y-I., Burgos, N. R., and Talbert, R. E. 2000. Cross- and multiple resistance of diclofop-resistant Lolium spp. Weed Sci 48:412419.CrossRefGoogle Scholar
Kuk, Y-I., Wu, J., Derr, J. F., and Hatzios, K. K. 1999. Mechanism of fenaxoprop resistance in an accession of smooth crabgrass (Digitaria ischaemum). Pestic. Biochem. Physiol 64:112123.Google Scholar
Leach, G. E., Devine, M. D., Kirkwood, R. C., and Marshall, G. 1995. Target enzyme-based resistance to acetyl-coenzyme A carboxylase inhibitors in Eleusine indica . Pestic. Biochem. Physiol 51:129136.CrossRefGoogle Scholar
Légère, A., Beckie, H. J., Stevenson, F. C., and Thomas, A. G. 2000. Survey of management practices affecting the occurrence of wild oat (Avena fatua) resistance to acetyl-CoA carboxylase inhibitors. Weed Technol 14:366376.Google Scholar
Letouzé, A. and Gasquez, J. 1999. A rapid reliable test for screening aryloxyphenoxypropionic acid resistance within Alopecurus myosuroides and Lolium spp. populations. Weed Res 39:3748.CrossRefGoogle Scholar
Letouzé, A. and Gasquez, J. 2000. A pollen test to detect ACCase target-site resistance within Alopecurus myosuroides populations. Weed Res 40:151162.Google Scholar
Letouzé, A. and Gasquez, J. 2001. Inheritance of fenoxaprop-P-ethyl resistance in a blackgrass (Alopecurus myosuroides Huds.) population. Theor. Appl. Genet 103:288296.Google Scholar
Letouzé, A. and Gasquez, J. 2003. Enhanced activity of several herbicide-degrading enzymes: a suggested mechanism responsible for multiple resistance in black-grass (Alopecurus myosuroides Huds). Agronomie 23:601608.Google Scholar
Levert, K. L. and Waldrop, G. L. 2002. A bisubstrate analog inhibitor of the carboxyltransferase component of acetyl-CoA carboxylase. Biochem. Biophys. Res. Commun 291:12131217.Google Scholar
Mallory-Smith, C. A. and Retzinger, E. J. Jr. 2003. Revised classification of herbicides by site of action for weed resistance management strategies. Weed Technol 17:605619.Google Scholar
Maneechote, C., Preston, C., and Powles, S. B. 1997. A diclofop-methyl– resistant Avena sterilis biotype with a herbicide-resistant acetyl-coenzyme A carboxylase and enhanced metabolism of diclofop-methyl. Pestic. Sci 49:105114.Google Scholar
Marles, M. A. S., Devine, M. D., and Hall, J. C. 1993. Herbicide resistance in Setaria viridis conferred by a less sensitive form of acetyl coenzyme A carboxylase. Pestic. Biochem. Physiol 46:714.Google Scholar
Marshall, G., Kirkwood, R. C., and Leach, G. E. 1994. Comparative studies on graminicide-resistant and susceptible biotypes of Eleusine indica . Weed Res 34:177185.CrossRefGoogle Scholar
Marshall, L. C., Somers, D. A., Dotray, P. D., Gegenbach, B. G., Wyse, D. L., and Gronwald, J. W. 1992. Allelic mutations in acetyl-coenzyme A carboxylase confer herbicide tolerance in maize. Theor. Appl. Genet 83:435442.Google Scholar
Matthews, N. and Powles, S. B. 1992. Aspects of the population dynamics of selection for herbicide resistance in Lolium rigidum (Gaud). Proc. First Int. Weed Control Congr 2:318320.Google Scholar
Matthews, N., Powles, S. B., and Preston, C. 2000. Mechanisms of resistance to acetyl-coenzyme A carboxylase–inhibiting herbicides in a Hordeum leporinum population. Pest Manag. Sci 56:441447.3.0.CO;2-L>CrossRefGoogle Scholar
McFadden, J. J., Frear, D. S., and Mansager, E. R. 1989. Aryl hydroxylation of diclofop by a cytochrome P450 dependent monooxygenase from wheat. Pestic. Biochem. Physiol 32:92100.CrossRefGoogle Scholar
Menéndez, J. and De Prado, R. 1996. Diclofop-methyl cross-resistance in a chlortoluron-resistant biotype of Alopecurus myosuroides . Pestic. Biochem. Physiol 56:123133.CrossRefGoogle Scholar
Menéndez, J. and De Prado, R. 1999. Characterization of two acetyl-CoA carboxylase isoforms in diclofop-methyl-resistant and -susceptible biotypes of Alopecurus myosuroides . Pestic. Biochem. Physiol 65:8289.Google Scholar
Mengistu, L. W., Messersmith, C. G., and Christoffers, M. J. 2003. Diversity of herbicide resistance among wild oat sampled 36 years apart. Weed Sci 51:764773.CrossRefGoogle Scholar
Milner, L. J., Reade, J. P. H., and Cobb, A. H. 2001. Developmental changes in gluthatione S-transferase activity in herbicide-resistant populations of Alopecurus myosuroides Huds (black-grass) in the field. Pest Manag. Sci 57:11001106.CrossRefGoogle Scholar
Morgan, W. G., King, I. P., Koch, S., Harper, J. A., and Thomas, H. M. 2001. Introgression of chromosomes of Festuca arundinacea var glaucescens into Lolium multiflorum revealed by genomic in situ hybridisation (GISH). Theor. Appl. Genet 103:696701.Google Scholar
Moss, S. R., Cocker, K. M., Brown, A. C., Hall, L., and Field, L. M. 2003. Characterisation of target-site resistance to ACCase-inhibiting herbicides in the weed Alopecurus myosuroides (black-grass). Pest Manag. Sci 59:190201.Google Scholar
Murray, B. G., Brûlé-Babel, A. L., and Morrison, I. N. 1996. Two distinct alleles encode for acetyl-CoA carboxylase inhibitor resistance in wild oat (Avena fatua). Weed Sci 44:476481.Google Scholar
Murray, B. G., Morrison, I. N., and Brûlé-Babel, A. L. 1995. Inheritance of acetyl-CoA carboxylase inhibitor resistance in wild oat (Avena fatua). Weed Sci 43:233238.CrossRefGoogle Scholar
Murray, B. G., Morrison, I. N., and Friesen, L. F. 2002. Pollen-mediated gene flow in wild oat. Weed Sci 50:321325.Google Scholar
Nikolau, B. J., Ohlrogge, J. B., and Wurtele, E. S. 2003. Plant biotin-containing carboxylases. Arch. Biochem. Biophys 414:211222.Google Scholar
Nikolskaya, T., Zagnitko, O., Tevzadze, G., Haselkorn, R., and Gornicki, P. 1999. Herbicide sensitivity determinant of wheat plastid acetyl-CoA carboxylase is located in a 400-amino acid fragment of the carboxyltransferase domain. Proc. Natl. Acad. Sci. USA 96:1464714651.Google Scholar
Parker, W. B., Marshall, L. C., Burton, J. D., Somers, D. A., Wyse, D. L., Gronwald, J. W., and Gegenbach, B. G. 1990. Dominant mutations causing alterations in acetyl-coenzyme A carboxylase confer tolerance to cyclohexanedione and aryloxyphenoxypropionate herbicides in maize. Proc. Natl. Acad. Sci. USA 87:71757179.Google Scholar
Peeters, N. and Small, I. 2001. Dual targeting to mitochondria and chloroplasts. Biochim. Biophys. Acta 1541:5463.Google Scholar
Podkowinski, J., Sroga, G. E., Haselkorn, R., and Gornicki, P. 1996. Structure of a gene encoding a cytosolic acetyl-CoA carboxylase of hexaploid wheat. Proc. Natl. Acad. Sci. USA 93:18701874.CrossRefGoogle ScholarPubMed
Preston, C. 2004. Herbicide resistance in weeds endowed by enhanced detoxification: complications for management. Weed Sci 52:448453.Google Scholar
Preston, C. and Powles, S. B. 1998. Amitrole inhibits diclofop metabolism and synergises diclofop-methyl in a diclofop-methyl–resistant biotype of Lolium rigidum . Pestic. Biochem. Physiol 62:179189.Google Scholar
Preston, C., Tardif, F. J., Christopher, J. T., and Powles, S. B. 1996. Multiple resistance to dissimilar herbicide chemistries in a biotype of Lolium rigidum due to enhanced activity of several herbicide degrading enzymes. Pestic. Biochem. Physiol 54:123134.Google Scholar
Price, L. J., Herbert, D., Cole, D. J., and Harwood, J. L. 2003. Use of plant cell cultures to study graminicide effects on lipid metabolism. Phytochemistry 63:533541.Google Scholar
Price, L. J., Moss, S. R., Cole, D. J., and Harwood, J. L. 2004. Graminicide resistance in a blackgrass (Alopecurus myosuroides) population correlates with insensitivity of acetyl-CoA carboxylase. Plant Cell Environ 27:1526.Google Scholar
Ratterman, D. M. and Balke, N. E. 1988. Herbicidal disruption of proton gradient development and maintenance by plasmalemma and tonoplast vesicles from oat root. Pestic. Biochem. Physiol 31:221236.Google Scholar
Reade, J. P. H. and Cobb, A. H. 2002. New, quick tests for herbicide resistance in black-grass (Alopecurus myosuroides Huds) based on increased gluthatione S-transferase activity and abundance. Pest Manag. Sci 58:2632.Google Scholar
Reade, J. P. H., Milner, L. J., and Cobb, A. H. 2004. A role for gluthatione S-transferase in resistance to herbicides in grasses. Weed Sci 52:468474.Google Scholar
Rendina, A. R., Craig-Kennard, A. C., Beaudoin, J. D., and Breen, M. K. 1990. Inhibition of acetyl-coenzyme A carboxylase by two classes of grass-selective herbicides. J. Agric. Food Chem 38:12821287.Google Scholar
Rendina, A. R., Felts, J. M., Beaudoin, J. D., Craig-Kennard, A. C., Look, L. L., Paraskos, S. L., and Hagenah, J. A. 1988. Kinetics characterization, stereoselectivity, and species selectivity of the inhibition of plant acetyl-CoA carboxylase by the aryloxyphenoxypropionic acid grass herbicides. Arch. Biochem. Biophys 265:219225.Google Scholar
Retrum, J. and Forcella, F. 2002. Giant foxtail (Setaria faberi) seedling assay for resistance to sethoxydim. Weed Technol 16:464466.Google Scholar
Richter, J. and Powles, S. B. 1993. Pollen expression of herbicide target site resistance genes in annual ryegrass (Lolium rigidum). Plant Physiol 102:10371041.Google Scholar
Roessler, P. G. 1990. Purification and characterization of acetyl-CoA carboxylase from the diatom Cyclotella cryptica . Plant Physiol 92:7378.CrossRefGoogle ScholarPubMed
Roux, F., Gasquez, J., and Reboud, X. 2004. The dominance of the herbicide resistance cost in several Arabidopsis thaliana mutant lines. Genetics 166:449460.Google Scholar
Sandermann, H. Jr. 2004. Molecular ecotoxicology of plants. Trends Plant Sci 9:406413.Google Scholar
Sasaki, Y., Konishi, T., and Nagano, Y. 1995. The compartmentation of acetyl-coenzyme A carboxylase in plants. Plant Physiol 108:445449.Google Scholar
Sasaki, Y. and Nagano, Y. 2004. Plant acetyl-CoA carboxylase: structure, biosynthesis, regulation, and gene manipulation for plant breeding. Biosci. Biotechnol. Biochem 68:11751184.Google Scholar
Secor, J., Cseke, C., and Owen, J. W. 1989. The discovery of the selective inhibition of acetyl-coenzyme A carboxylase activity by two classes of graminicides. Brighton Crop Prot. Conf. Weeds 3B:145154.Google Scholar
Seefeldt, S. S., Hoffman, D. L., Gealy, D. R., and Fuerst, E. P. 1998. Inheritance of diclofop resistance in wild oat (Avena fatua L.) biotypes from the Willamette Valley of Oregon. Weed Sci 46:170175.CrossRefGoogle Scholar
Seng, T. W., Skillman, T. R., Yang, N., and Hammond, C. 2003. Cyclohexanedione herbicides are inhibitors of rat heart acetyl-CoA carboxylase. Bioorg. Med. Chem. Lett 13:32373242.Google Scholar
Shimabukuro, R. H., Davis, D. G., and Hoffer, B. L. 2001. The effect of diclofop-methyl and its antagonist, vitamin E, on membrane lipids in oat (Avena sativa L.) and leafy spurge (Euphorbia esula L). Pestic. Biochem. Physiol 69:1326.Google Scholar
Shimabukuro, R. H., Walsh, W. C., and Hoerauf, R. A. 1979. Metabolism and selectivity of diclofop-methyl in wild oat and wheat. J. Agric. Food Chem 27:615623.Google Scholar
Shukla, A., Dupont, S., and Devine, M. D. 1997a. Resistance to ACCase-inhibitor herbicides in wild oat: evidence for target site–based resistance in two biotypes from Canada. Pestic. Biochem. Physiol 57:147155.Google Scholar
Shukla, A., Leach, G. E., and Devine, M. D. 1997b. High-level resistance to sethoxydim conferred by an alteration in the target enzyme, acetyl-CoA carboxylase, in Setaria faberi and Setaria viridis . Plant Physiol. Biochem 35:803807.Google Scholar
Shukla, A., Nycholat, C., Subramanian, M. V., Anderson, R. J., and Devine, M. D. 2004. Use of resistant ACCase mutants to screen for novel inhibitors against resistant and susceptible forms of ACCase from grass weeds. J. Agric. Food Chem 52:51445150.Google Scholar
Stoltenberg, D. E., Gronwald, J. W., Wyse, D. L., Burton, J. D., Somers, D. A., and Gegenbach, B. G. 1989. Effect of sethoxydim and haloxyfop on acetyl-coenzyme A carboxylase activity in Festuca species. Weed Sci 37:512516.Google Scholar
Tardif, F. J., Holtum, J. A. M., and Powles, S. B. 1993. Occurrence of a herbicide-resistant acetyl-coenzyme A carboxylase mutant in annual ryegrass (Lolium rigidum) selected by sethoxydim. Planta 190:176181.Google Scholar
Tardif, F. J. and Powles, S. B. 1994. Herbicide multiple-resistance in a Lolium rigidum biotype is endowed by multiple mechanisms: isolation of a subset with resistant acetyl-CoA carboxylase. Physiol. Plant 91:488494.Google Scholar
Tardif, F. J., Preston, C., Holtum, J. A. M., and Powles, S. B. 1996. Resistance to acetyl-coenzyme A carboxylase-inhibiting herbicides endowed by a single major gene encoding a resistant target site in a biotype of Lolium rigidum . Aust. J. Plant Physiol 23:1523.Google Scholar
Tal, A., Kotoula-Syka, E., and Rubin, B. 2000. Seed-bioassay to detect grass weeds resistant to acetyl coenzyme A carboxylase inhibiting herbicides. Crop Prot 19:467472.Google Scholar
Tal, A., Romano, M. L., Stephenson, G. R., Schwan, A. L., and Hall, J. C. 1993. Glutathione conjugation: a detoxification pathway for fenoxaprop-ethyl in barley, crabgrass, oat and wheat. Pestic. Biochem. Physiol 46:190199.Google Scholar
Tal, A. and Rubin, B. 2004. Molecular characterization and inheritance of resistance to ACCase-inhibiting herbicides in Lolium rigidum . Pest Manag. Sci. 601013–1018.CrossRefGoogle Scholar
Turner, J. A. and Pernich, D. J. 2002. Origin of enantiomeric selectivity in the aryloxyphenoxypropionic acid class of herbicidal acetyl coenzyme A carboxylase (ACCase) inhibitors. J. Agric. Food Chem 50:45544566.Google Scholar
Van Eerd, L. L., Hoagland, R. E., Zablotowicz, R. M., and Hall, J. C. 2003. Pesticide metabolism in plants and microorganisms. Weed Sci 51:472495.Google Scholar
Vila-Aiub, M. M., Ghersa, C. M., and Carceller, M. 2003. Effect of the herbicide diclofop-methyl on proton extrusion from Lolium multiflorum seedlings differing in resistance and fungal endophyte (Neotyphodium sp.) infection. Physiol. Plant 119:429439.Google Scholar
Vila-Aiub, M. M., Neve, P., Steadman, K. J., and Powles, S. B. 2005. Ecological fitness of a multiple herbicide resistant Lolium rigidum population: dynamics of seed germination and seedling emergence of target-site vs. metabolism-based resistant and susceptible phenotypes. J. Appl. Ecol 42:288298.Google Scholar
Volenberg, D. and Stoltenberg, D. 2002a. Altered acetyl-coenzyme A carboxylase confers resistance to clethodim, fluazifop and sethoxydim in Setaria faberi and Digitaria sanguinalis . Weed Res 42:342350.Google Scholar
Volenberg, D. S. and Stoltenberg, D. E. 2002b. Giant foxtail (Setaria faberi) outcrossing and inheritance of resistance to acetyl-coenzyme A carboxylase inhibitors. Weed Sci 50:622627.Google Scholar
Walker, K. A., Ridley, S. M., Lewis, T., and Harwood, J. L. 1988. Fluazifop, a grass-selective herbicide which inhibits acetyl-CoA carboxylase in sensitive plant species. Biochem. J 254:307310.Google Scholar
Wang, T. and Darmency, H. 1997. Inheritance of sethoxydim resistance in foxtail millet, Setaria italica (L.) Beauv. Euphytica 94:6973.Google Scholar
Wang, T. and Darmency, H. 1998. Cross-resistance to aryloxyphenoxypropionate and cyclohexanedione herbicides in foxtail millet (Setaria italica). Pestic. Biochem. Physiol 59:8188.CrossRefGoogle Scholar
Webb, S. R., Durst, G. L., Pernich, D., and Hall, J. C. 2000. Interaction of cyclohexanediones with acetyl coenzyme-A carboxylase and an artificial target-site antibody mimic: a comparative molecular field analysis. J. Agric. Food Chem 48:25062511.Google Scholar
Webb, S. R. and Hall, C. J. 2002. Development and evaluation of an immunological approach for the identification of novel acetyl coenzyme A carboxylase inhibitors: assay optimization and pilote screen results. J. Agric. Food Chem 48:12191228.Google Scholar
Werck-Reichhart, D. and Feyereisen, R. 2000. Cytochromes P450: a success story. Genome Biol 1:3003.13003.9.Google Scholar
Werck-Reichhart, D., Hehn, A., and Didierjean, L. 2000. Cytochromes P450 for engineering herbicide tolerance. Trends Plant Sci 5:116123.Google Scholar
Wiederholt, R. J. and Stoltenberg, D. E. 1996a. Similar fitness among large crabgrass (Digitaria sanguinalis) accessions resistant or susceptible to acetyl-coenzyme A carboxylase inhibitors. Weed Technol 10:4249.Google Scholar
Wiederholt, R. J. and Stoltenberg, D. E. 1996b. Absence of differential fitness among giant foxtail (Setaria faberi) accessions resistant and susceptible to acetyl-coenzyme A carboxylase inhibitors. Weed Sci 44:1824.Google Scholar
Yu, Q., Friesen, L. J. S., Zhang, X-Q., and Powles, S. B. 2004. Tolerance to acetolactate synthase and acetyl-coenzyme A carboxylase inhibiting herbicides in Vulpia bromoides is conferred by two co-existing resistance mechanisms. Pestic. Biochem. Physiol 78:2130.Google Scholar
Zagnitko, O., Jelenska, J., Tevzadze, G., Haselkorn, R., and Gornicki, P. 2001. An isoleucine/leucine residue in the carboxyltransferase domain of acetyl-CoA carboxylase is critical for interaction with aryloxyphenoxypropionate and cyclohexanedione inhibitors. Proc. Natl. Acad. Sci. USA 98:66176622.Google Scholar
Zhang, H., Tweel, B., Li, J., and Tong, L. 2004a. Crystal structure of the carboxyltransferase domain of acetyl-coenzyme A carboxylase in complex with CP-640186. Structure 12:16831691.Google Scholar
Zhang, H., Tweel, B., and Tong, L. 2004b. Molecular basis for the inhibition of the carboxyltransferase domain of acetyl-coenzyme-A carboxylase by haloxyfop and diclofop. Proc. Natl. Acad. Sci. USA 101:59105915.Google Scholar
Zhang, H., Yang, Z., Shen, Y., and Tong, L. 2003. Crystal structure of the carboxyltransferase domain of acetyl-coenzyme A carboxylase. Science 299:20642067.Google Scholar