Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-19T00:22:40.288Z Has data issue: false hasContentIssue false

Target-Site Resistance to Nicosulfuron in Johnsongrass (Sorghum halepense) from Chilean Corn Fields

Published online by Cambridge University Press:  20 January 2017

María J. Hernández*
Affiliation:
Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago, Chile
Rocío León
Affiliation:
Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago, Chile
Albert J. Fischer
Affiliation:
Department of Plant Sciences, University of California Davis, One Shields Avenue, Davis, CA 95616
Marlene Gebauer
Affiliation:
Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago, Chile
Rafael Galdames
Affiliation:
INIA Carillanca, Km 10 Camino Cajón, Vilcún, Temuco, Chile
Rodrigo Figueroa
Affiliation:
Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago, Chile
*
Corresponding author's E-mail: [email protected]

Abstract

Johnsongrass is a common weed of corn in Chile, which is most often controlled by nicosulfuron, an acetohydroxyacid synthase (AHAS)-inhibiting herbicide. Recurrent nicosulfuron use has resulted in selection for resistant johnsongrass biotypes. We conducted studies to determine nicosulfuron resistance levels in two johnsongrass biotypes from Chile and to investigate if this resistance was target-site mediated. Whole-plant resistance to nicosulfuron was 33 and 46 times higher in resistant (R) than in susceptible (S) plants grown from seed and rhizomes, respectively. The nicosulfuron concentrations for 50% inhibition of AHAS enzyme activity in vitro were more than 11 times higher in R than in S plants. Sequencing analysis of the AHAS coding sequence revealed a Trp-574-Leu substitution in both R biotypes. This study shows that resistance to nicosulfuron in the two R biotypes is conferred by an altered target site. We also report the first consensus sequence of the johnsongrass AHAS gene corresponding to the known mutation sites conferring resistance to AHAS-inhibiting herbicides.

Type
Weed Biology and Ecology
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alarcón-Reverte, R, García, A, Urzúa, J, Fischer, AJ (2013) Resistance to glyphosate in junglerice (Echinochloa colona) from California. Weed Sci. 61:4854 Google Scholar
Beckie, HJ, Tardif, FJ (2012) Herbicide cross resistance in weeds. Crop Prot. 35:1528 Google Scholar
Bendixen, LE (1986) Corn (Zea mays) yield in relationship to johnsongrass (Sorghum halepense) population. Weed Sci. 34:449451 Google Scholar
Bowers, JE, Abbey, C, Anderson, S, Chang, Ch, Draye, X, Hoppe, AH, Jessup, R, Lemke, C, Lennigton, J, Li, Z, Liu, S, Luo, L, Marler, BS, Ming, R, Mitchell, SE, Qiang, D, Reischmann, K, Schulze, SR, Skinner, DN, Wang, Y, Kresovich, S, Schetrz, KF, Paterso, AH (2003) A high-density genetic recombination map of sequence-tagged sites for sorghum, as a framework for comparative structural and evolutionary genomics of tropical grains and grasses. Genetics. 165:367386 Google Scholar
Busi, R, Gaines, TA, Walsh, MJ, Powles, SB (2012) Understanding the potential for resistance evolution to the new herbicide pyroxasulfone: field selection at high doses versus recurrent selection at low doses. Weed Res. 52:489499 Google Scholar
Celarier, RP (1958) Cytotaxonomic notes on the subsection Halepensia of the genus Sorghum. Bull Torr Bot Club. 85:4962 Google Scholar
Corbett, CL, Tardif, FJ (2006) Detection of resistance to acetolactate synthase inhibitors in weeds with emphasis on DNA-based techniques: a review. Pest Manag Sci. 62:584597 Google Scholar
Duggleby, RG, Pang, SS (2000) Acetohydroxyacid synthase. J Biochem Mol Biol. 33:136 Google Scholar
Fernández, L, de Haro, LA, Distefano, AJ, Martínez, MC, Lía, V, Papa, JC, Olea, I, Tosto, D, Hopp, HE (2013) Population genetics structure of glyphosate-resistant johnsongrass (Sorghum halepense L. Pers) does not support a single origin of the resistance. Ecol Evol. 3:33883400 Google Scholar
Figueroa, R, Gebauer, M, Fischer, AJ, Kogan, M (2007) Resistance to bensulfuron-methyl in water plantain (Alisma plantago-aquatica) populations from Chilean paddy fields to bensulfuron-methyl in water populations from Chilean paddy fields. Weed Technol. 22:602608 Google Scholar
Fischer, AJ, Bayer, DE, Carriere, MD, Ateh, CM, Yim, K-O (2000) Mechanisms of resistance to bispyribac-sodium in an Echinochloa phyllopogon accession. Pestic Biochem Physiol. 68:156165 Google Scholar
Foy, CL, Witt, HL (1990) Johnsongrass control with DPX-V9360 and CGA-136872 in corn (Zea mays) in Virginia. Weed Technol. 4:615619 Google Scholar
Gressel, J, Segel, LA (1990) Modelling the effectiveness of herbicide rotations and mixtures as strategies to delay or preclude resistance. Weed Technol. 4:186198 Google Scholar
Grula, JW, Hudspeth, RL, Hobbs, SL, Anderson, DM (1995) Organization, inheritance and expression of acetohydroxyacid synthase genes in the cotton allotetraploid Gossypium hirsutum . Plant Mol Biol. 28:837846 Google Scholar
Gubbiga, NG, Worsham, AD, Corbin, FT (1996) Root/rhizome exudation of nicosulfuron from treated johnsongrass (Sorghum halepense) and possible implications for corn (Zea mays). Weed Sci. 44:455460 Google Scholar
Heap, I (2014) The International Survey of Herbicide Resistant Weeds. http://www.weedsience.org. Accessed February 16, 2014Google Scholar
Holm, LG, Plucknett, DL, Pancho, JV, Herberger, JP (1977) The World's Worst Weeds: Distribution and Biology. Honolulu, Hawaii University Press of Hawaii. 609 p.Google Scholar
Iwakami, S, Uchino, A, Watanabe, H, Yamasue, Y, Inamura, T (2012) Isolation and expression of genes for acetolactate synthase and acetyl-CoA carboxylase in Echinochloa phyllopogon, a polyploid weed species. Pest Manag Sci. 68:10981106 Google Scholar
Kaloumenos, NS, Chatzilazaridou, SL, Mylona, PV, Polidoros, AN, Eleftherohorinos, IG (2013) Target-site mutation associated with cross-resistance to ALS-inhibiting herbicides in late watergrass (Echinochloa oryzicola Vasing.). Pest Manag Sci. 69:865873 Google Scholar
Kaloumenos, NS, Eleftherohorinos, IG (2009) Identification of a johnsongrass (Sorghum halepense) biotype resistant to ACCase-inhibiting herbicide in northern Greece. Weed Technol. 23:470476 Google Scholar
Kuk, YI, Jung, HII, Kwon, OD, Lee, DJ, Burgos, NR, Guh, JO (2003) Sulfonylurea herbicide-resistant Monochoria vaginalis in Korean rice culture. Pest Manag Sci. 59:949961 Google Scholar
Lamego, FP, Charlson, D, Delatorre, CA, Burgos, NR, Vidal, RA (2009) Molecular basis of resistance to ALS-inhibitor herbicides in greater Beggarticks. Weed Sci. 57:464481 Google Scholar
Laplante, J, Rajcan, I, Tardif, FJ (2009) Multiple allelic forms of acetohydroxyacid synthase are responsible for herbicide resistance in Setaria viridis . Theor Appl Genet. 119:577585 Google Scholar
McWhorter, CG (1972) Factors affecting johnsongrass rhizome production and germination. Weed Sci. 20:4145 Google Scholar
McWhorter, CG (1989) History, biology and control of johnsongrass. Rev Weed Sci. 4:85121 Google Scholar
Merotto, A Jr., Jasieniuk, M, Fischer, AJ (2010) Distribution and cross-resistance patterns of ALS-inhibiting herbicide reistance in smallflower umbrella sedge (Cyperus difformis). Weed Sci. 58:2229 Google Scholar
Merotto, A Jr., Jasieniuk, M, Osuna, MD, Vidotto, F, Ferrero, A, Fischer, AJ (2009) Cross-resistance to herbicides of five ALS-inhibiting groups and sequencing of the ALS Ggne in Cyperus difformis L. J Agric Food Chem. 57:13891398 Google Scholar
ODEPA. (2013) Cultivos Anuales: Superficie, Producción Y Rendimientos. http://www.odepa.cl. Accessed October 6, 2013Google Scholar
Osuna, MD, Vidotto, F, Fischer, AJ, Bayer, DE, De Prado, R, Ferrero, A (2002) Cross-resistance to bispyribac-sodium and bensulfuron-methyl in Echinochloa phyllopogon and Cyperus difformis . Pestic Biochem Physiol. 73:917 Google Scholar
Panozzo, SL, Scarabel, L, Tranel, PJ, Sattin, M (2013) Target-site resistance to ALS inhibitors in the polyploid species Echinochloa crus-galli . Pestic Biochem Physiol. 105:93101 Google Scholar
Powles, SB, Yu, Q (2010) Evolution in action: plants resistant to herbicides. Annu Rev Plant Biol. 61:317347 Google Scholar
Prado, M, De Prado, R, Franco, AR (2004) Design and optimization of degenerated universal primers for the cloning of the plant acetolactate synthase conserved domains. Weed Sci. 52:487491 Google Scholar
Price, WJ, Shafii, B, Seefeldt, SS (2012) Estimation of dose–response models for discrete and continuous data in weed science. Weed Technol. 26:587601 Google Scholar
Ray, TB (1984) Site of action of chlorsulfuron. Plant Physiol. 75:827831 Google Scholar
Riar, DS, Norsworthy, JK, Srivastava, V, Nandula, V, Bond, JA, Scott, RC (2013) Physiological and molecular basis of acetolactate synthase-inhibiting herbicide resistance in barnyardgrass (Echinochloa crus-galli). J Agric Food Chem. 61:278289 Google Scholar
Ritz, C (2010) Toward a unified approach to dose-response modeling in ecotoxicology. Environ Toxicol Chem. 29:220229 Google Scholar
Rutledge, RG, Hattori, J, Miki, BL (1991) Molecular characterization and genetic origin of the brassica napus acetohydroxyacid synthase multigene family. Mol Gen Genet. 229:3140 Google Scholar
Scarabel, L, Locascio, A, Furini, A, Sattin, M, Varotto, S (2010) Characterisation of ALS genes in the polyploid species Schoenoplectus mucronatus and implications for resistance management. Pest Manag Sci. 66:337344 Google Scholar
Shaner, DL, Feist, DA, Retzinger, EJ (1997) SAMOA TM: One company's approach to herbicide-resistant weed management. Pest Manag Sci. 51:367370 Google Scholar
Tranel, PJ, Wright, TR, Heap, IM (2013) ALS Mutations from Herbicide-resistant Weeds. http://www.weedscience.com. Accessed October 22, 2013Google Scholar
Tsuji, R, Fischer, AJ, Yoshimo, M, Roel, A, Hill, JE (2003) Herbicide-resistant late watergrass (Echinochloa phyllopogon): similarity in morphological and amplified fragment length polymorphism traits. Weed Sci. 51:740747 Google Scholar
Veldhuis, LJ, Hall, LM, O'Donovan, JT, Dyer, W, Hall, JC (2000) Metabolism-based resistance of a wild mustard (Sinapis arvensis L.) biotype to ethametsulfuron-methyl. J Agricul Food Chem. 48:29862990 Google Scholar
Vila-Aiub, MM, Balbi, MC, Gundel, PE, Ghersa, CM, Powles, SB (2007) Evolution of glyphosate-resistant johnsongrass (Sorghum halepense) in glyphosate-resistant soybean. Weed Sci. 55:566571 Google Scholar
Warwick, SI, Black, LD (1983) The biology of Canadian weeds. 61 Sorghum halepense (L.) Pers. Can J Plant Sci. 63:9971014 Google Scholar
Yasuor, H, Osuna, MD, Ortiz, A, Saldaín, NE, Eckert, JW, Fischer, AJ (2009) Mechanism of resistance to penoxsulam in late watergrass [Echinochloa phyllopogon (Stapf) Koss.]. J Agricul Food Chem. 57:36533660 Google Scholar
Yu, Q, Ahmad-Hamdani, MS, Han, H, Christoffers, MJ, Powles, SB (2013) Herbicide resistance-endowing ACCase gene mutations in hexaploid wild oat (Avena fatua): insights into resistance evolution in a hexaploid species. Heredity. 110:220231 Google Scholar
Yu, Q, Han, H, Vila-Aiub, MM, Powles, SB (2010) AHAS herbicide resistance endowing mutations: effect on AHAS functionality and plant growth. J Exp Bot. 61:39253934 Google Scholar
Yu, Q, Powles, SB (2014) Resistance to AHAS inhibitor herbicides: current understanding. Pest Mang Sci. 70:13401350 Google Scholar
Yuan, JS, Abercrombie, LLG, Cao, Y, Halfhill, MD, Peng, Y, Hu, J, Rao, MR, Heck, GR, Larosa, TJ, Sammons, RD, Wang, X, Ranjan, P, Johnson, DH, Wadl, PA, Scheffler, BE, Rinehart, TA, Trigiano, RN, Stewart, N Jr. (2010) Functional genomics analysis of horseweed (Conyza canadensis) with special reference to the evolution of non-target-site glyphosate resistance. Weed Sci. 58:109117 Google Scholar