Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-24T01:38:59.344Z Has data issue: false hasContentIssue false

Synchrony of flowering between canola and wild radish (Raphanus raphanistrum)

Published online by Cambridge University Press:  20 January 2017

Marie-Josée Simard
Affiliation:
Soils and Crops Research and Development Centre, Agriculture and Agri-Food Canada, 2560 boul. Hochelaga, Sainte-Foy, QC G1V 2J3, Canada

Abstract

Many conditions need to be satisfied for gene flow to occur between a transgenic crop and its weedy relatives. Flowering overlap is one essential requirement for hybrid formation. Hybridization can occur between canola and its wild relative, wild radish. We studied the effects of wild radish plant density and date of emergence, canola (glyphosate resistant) planting dates, presence of other weeds, and presence of a wheat crop on the synchrony of flowering between wild radish and canola (as a crop and volunteer). Four field experiments were conducted from 2000 to 2002 in St-David de Lévis, Québec. Flowering periods of wild radish emerging after glyphosate application overlapped with early-, intermediate-, and late-seeded canola 14, 26, and 55%, respectively, of the total flowering time. Flowering periods of early-emerging wild radish and canola volunteers in uncropped treatments overlapped from mid-June until the end of July, ranging from 26 to 81% of the total flowering time. Flowering periods of wild radish and canola volunteers emerging synchronously on May 30 or June 5 as weeds in wheat overlapped 88 and 42%, respectively, of their total flowering time. For later emergence dates, few flowers or seeds were produced by both species because of wheat competition. Wild radish density in canola and wild radish and canola volunteer densities in wheat did not affect the mean flowering dates of wild radish or canola. Increasing wild radish density in uncropped plots (pure or weedy stands) hastened wild radish flowering. Our results show that if hybridization is to happen, it will be most likely with uncontrolled early-emerging weeds in crops or on roadsides, field margins, and uncultivated areas, stressing the need to control the early flush of weeds, weedy relatives, and crop volunteers in noncrop areas.

Type
Weed Biology and Ecology
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Augspurger, C. K. 1981. Reproductive synchrony of a tropical shrub: experimental studies on effects of pollinators and seed predators on Hybanthus prunifolius (Violaceae). Ecology 62:776788.CrossRefGoogle Scholar
Augspurger, C. K. 1983. Phenology, flowering synchrony and fruit set of six neotropical shrubs. Biotropica 15:257267.CrossRefGoogle Scholar
Baranger, A., Chèvre, A. M., Eber, F., and Renard, M. 1995. Effects of oilseed rape genotype on the spontaneous hybridization rate with a weedy species: an assessment of transgene dispersal. Theor. Appl. Genet 91:956963.CrossRefGoogle ScholarPubMed
Beckie, H. J., Warwick, S. I., Nair, H., and Séguin-Swartz, G. 2003. Gene flow in commercial fields of herbicide-resistant canola (Brassica napus). Ecol. Appl 13:12761294.CrossRefGoogle Scholar
Benedek, P., Béres, I., and Nyéki, J. 1998. Competition between pear flowers, flowering weeds and other fruit trees for honeybee pollination. Acta Hortic 475:417426.CrossRefGoogle Scholar
Canola Council of Canada. 2001. Canola Grower's Manual. www.canola-council.org.Google Scholar
Cheam, A. H. 1986. Seed production and seed dormancy in wild radish (Raphanus raphanistrum L.) and some possibilities for improving control. Weed Res 26:405413.CrossRefGoogle Scholar
Chèvre, A. M., Eber, F., and Renard, M. 1997. Colza transgénique et risques environnementaux. Biofutur 172:4448.CrossRefGoogle Scholar
Chèvre, A. M., Eber, F., Baranger, A., Hureau, G., Barret, P., Picault, H., and Renard, M. 1998. Characterization of backcross generations obtained under field conditions from oilseed rape-wild radish F1 interspecific hybrids: an assessment of transgene dispersal. Theor. Appl. Genet 97:9098.CrossRefGoogle Scholar
Chèvre, A. M., Eber, F., Darmency, H., Fleury, A., Picault, H., Letanneur, J. C., and Renard, M. 2000. Assessment of interspecific hybridization between transgenic oilseed rape and wild radish under agronomic conditions. Theor. Appl. Genet 100:12331239.CrossRefGoogle Scholar
Chèvre, A. M., Eber, F., Darmency, H., and Renard, M. 1999. Last results concerning gene flow from trangenic oilseed rape to wild radish. Pages 14 in Proceedings of the 10th International Rapeseed Congress, 26– 29 September 1999, Canberra, Australia. Paris, France: Groupe Consultatif International de Recherche sur le Colza.Google Scholar
Cruzan, M. B. and Arnold, M. L. 1994. Assortative mating and natural selection in an iris hybrid zone. Evolution 48:19461958.CrossRefGoogle Scholar
Cruzan, M. B., Hamrick, J. L., Arnold, M. L., and Bennett, B. B. 1994. Mating system variation in hybridizing irises: effects of phenology and floral densities on family outcrossing rates. Heredity 72:95105.CrossRefGoogle Scholar
Cuthbert, J. L. and McVetty, P. B. E. 2001. Plot-to-plot, row–to-row and plant–to-plant outcrossing studies in oilseed rape. Can. J. Plant Sci 81:657664.CrossRefGoogle Scholar
Darmency, H. 1997. Gene flow between crops and weeds: risk for new herbicide resistant weeds?. Pages 239248 in De Prado, R., Jorrin, J., and Garcia-Torres, L. eds. Weed and Crop Resistance to Herbicides. London: Kluwer Academic.CrossRefGoogle Scholar
Darmency, H., Lefol, E., and Fleury, A. 1998. Spontaneous hybridizations between oilseed rape and wild radish. Mol. Ecol 7:14671473.CrossRefGoogle Scholar
Degenhardt, D. F. and Kondra, Z. P. 1981. The influence of seeding date and seedling rate on seed yield and growth characters of five genotypes of Brassica napus . Can. J. Plant. Sci 61:185190.Google Scholar
Downey, R. K., Klassen, A. J., and Stringam, G. R. 1980. Rapeseed and mustard. Pages 495509 in Fehr, W. R. and Hadley, H. H. eds. Hybridization of Crop Plants. Madison, WI: American Society of Agronomy and Crop Science Society of America.Google Scholar
Garrett, H. J. and Orson, J. H. 1989. Depth and date of emergence of volunteer oilseed rape (Brassica napus L.) and its control with herbicides used in peas, beans, potatoes and sugar beet. Pages 811816 in Proceedings of the British Crop Protection Conference—Weeds. Farnham, United Kingdom: British Crop Protection Council.Google Scholar
Ghersa, C. M. and Holt, J. S. 1995. Using phenology prediction in weed management: a review. Weed Res 35:461470.CrossRefGoogle Scholar
Goodell, K., Elam, D. R., Nason, J. D., and Ellstrand, N. C. 1997. Gene flow among small populations of a self-incompatible plant: an interaction between demography and genetics. Am. J. Bot 84:13621371.CrossRefGoogle Scholar
Guéritaine, G. and Darmency, H. 2001. Polymorphism for interspecific hybridisation within a population of wild radish (Raphanus raphanistrum) pollinated by oilseed rape (Brassica napus). Sex. Plant Reprod 14:169172.CrossRefGoogle Scholar
Hall, L., Topinka, K., Huffman, J., Davis, L., and Allen, A. 2000. Pollen flow between herbicide-resistant Brassica napus is the cause of multiple-resistant B. napus volunteers. Weed Sci 48:688694.CrossRefGoogle Scholar
Johnson, B. L., McKay, K. R., Schneiter, A. A., Hanson, B. K., and Schatz, B. G. 1995. Influence of planting date on canola and crambe production. J. Prod. Agric 8:594599.CrossRefGoogle Scholar
Kirkland, K. J. and Johnson, E. N. 2000. Alternative seeding dates (fall and April) affect Brassica napus canola yield and quality. Can. J. Plant Sci 80:713719.CrossRefGoogle Scholar
Kondra, Z. P. 1977. Effects of planting date on rapeseed. Can. J. Plant Sci 57:607609.CrossRefGoogle Scholar
Lee, T. N. and Snow, A. 1998. Pollinator preferences and the persistence of crop genes in wild radish populations (Raphanus raphanistrum, Brassicaceae). Am. J. Bot 85:333339.CrossRefGoogle ScholarPubMed
Lefol, E., Danielou, V., and Darmency, H. 1996. Predicting hybridization between transgenic oilseed rape and wild mustard. Field Crop Res 45:153161.CrossRefGoogle Scholar
Légère, A., Simard, M-J., Thomas, A. G., Pageau, D., Lajeunesse, J., Warwick, S. I., and Derksen, D. A. 2001. Presence and persistence of volunteer canola in Canadian cropping systems. Pages 143148 in Proceedings of the British Crop Protection Conference—Weeds. Farnham, United Kingdom: British Crop Protection Council.Google Scholar
Mazer, S. J. 1987. Parental effects on seed development and seed yield in Raphanus raphanistrum: implications for natural and sexual selection. Evolution 41:355371.Google ScholarPubMed
Mazer, S. J. and Schick, C. T. 1991. Constancy of population parameters for life history and floral traits in Raphanus sativus L. II. Effects of planting density on phenotype and heritability estimates. Evolution 45:18881907.CrossRefGoogle ScholarPubMed
Mekenian, M. R. and Willemsen, R. W. 1975. Germination characteristics of Raphanus raphanistrum. I. Laboratory studies. Bull. Torrey Bot. Club 102:243252.CrossRefGoogle Scholar
Ollerton, J. and Lack, A. 1998. Relationships between flowering phenology, plant size and reproductive success in Lotus corniculatus (Fabaceae). Plant Ecol 139:3547.CrossRefGoogle Scholar
Osborn, T. C., Kole, C., Parkin, I. A. P., Sharpe, A. G., Kuiper, M., Lydiate, D. J., and Trick, M. 1997. Comparison of flowering time genes in Brassica rapa, B. napus and Arabidopsis thaliana . Genetics 146:11231129.CrossRefGoogle ScholarPubMed
Rakow, G. and Woods, D. L. 1987. Outcrossing in rape and mustard under Saskatchewan prairie conditions. Can. J. Plant Sci 67:147151.CrossRefGoogle Scholar
Rathchke, B. 1988. Interaction for pollination among coflowering shrubs. Ecology 69:446457.CrossRefGoogle Scholar
Reeves, T. G., Code, G. R., and Piggin, C. M. 1981. Seed production and longevity, seasonal emergence, and phenology of wild radish, (Raphanus raphanistrum L). Aust. J. Exp. Agric. Anim. Husb 21:524530.CrossRefGoogle Scholar
Rieger, M. A., Potter, T., Preston, C., and Powles, S. B. 2001. Hybridisation between Brassica napus L. and Raphanus raphanistrum L. under agronomic field conditions. Theor. Appl. Genet 103:555560.CrossRefGoogle Scholar
Rieger, M. A., Preston, C., and Powles, S. B. 1999. Risks of gene flow from transgenic herbicide-resistant canola (Brassica napus) to weedy relatives in southern Australian cropping systems. Aust. J. Agric. Res 50:115128.CrossRefGoogle Scholar
Sabourin, A., Bertrand, M., Auger, P., Bonkowski, P. M., and Paquette, D. 1992. Guide des Crucifères sauvages de l'est du Canada. Sainte-Foy, Québec: A. Sabourin and Direction de la conservation et du patrimoine écologique, Ministère de l'Environnement et de la Faune, Sainte-Foy, Québec. 249 p.Google Scholar
Sampson, D. R. 1964. A one-locus self-incompatibility system in Raphanus raphanistrum . Can. J. Genet. Cytol 6:435445.CrossRefGoogle Scholar
Simard, M-J., Légère, A., Pageau, D., Lajeunesse, J., and Warwick, S. I. 2002. The frequency and persistence of canola (Brassica napus) volunteers in Québec cropping systems. Weed Technol 16:433439.CrossRefGoogle Scholar
Stanton, M. L. 1985. Seed size and emergence time within a stand of wild radish (Raphanus raphanistrum L.). The establishment of a fitness hierarchy. Oecologia 67:524531.CrossRefGoogle ScholarPubMed
Stanton, M. L., Snow, A. A., and Handel, S. N. 1986. Floral evolution: attractiveness to pollinators increases male fitness. Science 232:16251627.CrossRefGoogle ScholarPubMed
Warwick, S. I. 2000. Le péril écologique des cultures transgéniques?. Pour la Science 26(Suppl): 128132.Google Scholar
Warwick, S. I., Simard, M-J., Légère, A., Beckie, H. J., Braun, L., Zhu, B., Mason, P., Séguin-Swartz, G., and Stewart, C. N. Jr. 2003. Hybridization between transgenic Brassica napus L. and its wild relatives: B. rapa L., Erucastrum gallicum (Willd.) O. E. Schulz, Raphanus raphanistrum L., and Sinapis arvensis L. Theor. Appl. Genet 107:528539.CrossRefGoogle Scholar
Weiner, J. 1988. The influence of competition on plant reproduction. Pages 228245 in Lovett Doust, J. and Lovett Doust, L. eds. Plant Reproductive Ecology: Patterns and Strategies. New York: Oxford University Press.Google Scholar