Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-15T05:20:57.320Z Has data issue: false hasContentIssue false

Self-Limitation of Herbicide Mobility by Phytotoxic Action

Published online by Cambridge University Press:  12 June 2017

Donald R. Geiger
Affiliation:
Dep. Biol., Univ. Dayton, Dayton, OH 45469, U.S.A.
Hank D. Bestman
Affiliation:
Dep. Biol., The King's College, 10766-97 Street, Edmonton, Alberta T5H 2M1, Canada

Abstract

Translocation of phloem-mobile herbicides was inhibited by their phytotoxic action on processes that maintain assimilate translocation. Glyphosate lowered import into developing sink leaves soon after it was applied to exporting sugarbeet leaves. Later, photosynthesis slowed down and starch accumulation stopped, but export of both assimilate and glyphosate continued until it was limited by starch availability at night Experiments with field pennycress and Tartary buckwheat indicated that self-limitation of chlorsulfuron translocation probably occurred and that it resulted from lowered assimilate entry into phloem rather than from inhibition of photosynthesis or carbon allocation. Leakage of chlorsulfuron from the phloem when export was slowed down also may have contributed to its reduced translocation.

Type
Special Topics
Copyright
Copyright © 1990 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Amrhein, N., Deus, B., Gehrke, B., and Steinrucken, H. C. 1980. The site of the inhibition of the shikimate pathway by glyphosate. II. Interference of glyphosate with chorismate formation in vivo and in vitro. Plant Physiol. 66:830834.CrossRefGoogle ScholarPubMed
2. Amrhein, N., Hollander-Czytko, H., Leifeld, J., Schulz, A., Steinrucken, H. C., and Topp, H. 1982. Interference of glyphosate with the shikimate pathway. Journées internationales détudes du Groupe Polyphenols. Boudet, A. M. and Ranjeva, R., eds. Bull. de Liaison, II: 2131, Toulouse.Google Scholar
3. Chaleff, R. S. and Mauvais, C. J. 1984. Acetolactate synthase is the site of action of two sulfonylurea herbicides in higher plants. Science 224:14431445.CrossRefGoogle ScholarPubMed
4. Devine, M. D. 1989. Phloem translocation of herbicides. Rev. Weed Sci. 4:191213.Google Scholar
5. Devine, M. D. and Vanden Born, W. H. 1985. Absorption, translocation, and foliar activity of clopyralid and chlorsulfuron in Canada thistle (Cirsium arvense) and perennial sowthistle (Sonchus arvensis). Weed Sci. 33:524530.CrossRefGoogle Scholar
6. Dick, P. S. and apRees, T. 1975. The pathway of sugar transport in roots of Pisum sativum . J. Exp. Bot. 26:305314.CrossRefGoogle Scholar
7. Geiger, D. R. 1975. Phloem loading. Pages 395431 in Zimmermann, M. H. and Milburn, J. A., eds. Encyclopedia of Plant Physiology, New Series. Vol. I. Transport in the Phloem. Chapter 17. Springer-Verlag, Berlin, New York.Google Scholar
8. Geiger, D. R. 1979. Control of partitioning and export of carbon in leaves of higher plants. Bot. Gaz. 140:241248.CrossRefGoogle Scholar
9. Geiger, D. R. 1986. Processes affecting carbon allocation and partitioning among sinks. Pages 375388 in Cronshaw, J., Lucas, W. J., and Giaquinta, R. T., eds. Phloem Transport. Alan R. Liss, Inc., New York.Google Scholar
10. Geiger, D. R. and Sovonick, S. A. 1975. Effects of temperature, anoxia, and other metabolic inhibitors on translocation. Pages 256286 in Zimmermann, M. H. and Milburn, J. A., eds. Encyclopedia of Plant Physiology, New Series. Vol. I. Transport in the Phloem. Chapter 11. Springer-Verlag, Berlin, New York.Google Scholar
11. Geiger, D. R. and Fondy, B. R. 1980. Phloem loading and unloading: Pathways and mechanisms. What's New in Plant Physiol. 11:2528.Google Scholar
12. Geiger, D. R. and Giaquinta, R. T. 1982. Photosynthesis translocation and crop yield. Pages 345386 in Govindjee, , ed. Photosynthesis: Carbon Assimilation and Plant Productivity. Academic Press, New York.Google Scholar
13. Geiger, D. R., Kapitan, S. W., and Tucci, M. A. 1986. Glyphosate inhibits photosynthesis and allocation of carbon to starch in sugar beet leaves. Plant Physiol. 82:468472.CrossRefGoogle ScholarPubMed
14. Geiger, D. R., Tucci, M. A., and Servaites, J. C. 1987. Glyphosate effects on carbon assimilation and gas exchange in sugar beet leaves. Plant Physiol. 85:365369.CrossRefGoogle ScholarPubMed
15. Ghosh, H. P. and Preiss, J. 1966. Adenosine diphosphate glucose pyrophosphorylase. A regulatory enzyme in the biosynthesis of starch in spinach leaf chloroplasts. J. Biol. Chem. 241:44914504.CrossRefGoogle ScholarPubMed
16. Giaquinta, R. T. 1983. Phloem loading of sucrose. Annu. Rev. Plant Physiol. 34:247387.CrossRefGoogle Scholar
17. Gougler, J. A. and Geiger, D. R. 1981. Uptake and distribution of N-(phosphonomethyl)glycine in sugar beet plants. Plant Physiol. 68:668672.CrossRefGoogle Scholar
18. Gougler, J. A. and Geiger, D. R. 1984. Carbon partitioning and herbicide transport in glyphosate-treated sugarbeet (Beta vulgaris). Weed Sci. 32:546551.CrossRefGoogle Scholar
19. Hageman, L. H. and Behrens, R. 1984. Basis for response differences of two broadleaf weeds to chlorsulfuron. Weed Sci. 32:162167.CrossRefGoogle Scholar
20. Kleier, D. A. 1988. Phloem mobility of xenobiotics. I. Mathematical model unifying the weak acid and intermediate permeability theories. Plant Physiol. 86:803810.CrossRefGoogle ScholarPubMed
21. Lichtner, F. T. 1984. Phloem transport of xenobiotic chemicals. What's New in Plant Physiol. 15:2932.Google Scholar
22. Neuman, S., Grimm, E., and Jacob, F. 1985. Transport of xenobiotics in higher plants. I. Structural prerequisites for translocation in the phloem. Biochem. Physiol. Pflanz. 180:257268.CrossRefGoogle Scholar
23. Ray, T. B. 1984. Site of action of chlorsulfuron. Inhibition of valine and isoleucine biosynthesis in plants. Plant Physiol. 75:827831.CrossRefGoogle ScholarPubMed
24. Schmalstig, J. G. and Geiger, D. R. 1985. Phloem unloading in developing leaves of sugar beet. I. Evidence for pathway through the symplast. Plant Physiol. 79:237241.Google ScholarPubMed
25. Servaites, J. C., Tucci, M. A., and Geiger, D. R. 1987. Glyphosate effects on carbon assimilation, ribulose bisphosphate carboxylase activity, and metabolite levels in sugar beet leaves. Plant Physiol. 85:370374.Google ScholarPubMed
26. Stitt, M., Huber, S. C., and Kerr, P. S. 1987. Control of photosynthetic sucrose formation. Pages 328409 in Hatch, M. D. and Boardman, N. K., eds. Biochemistry of Plants. Photosynthesis. Vol. 8. Academic Press, New York.Google Scholar
27. Sung, S.-J. S., Xu, D-P., Galloway, C. M., and Black, C. C. Jr. 1988. A reassessment of glycolysis and gluconeogenesis in higher plants. Physiol. Plant. 72:650654.CrossRefGoogle Scholar
28. Sweetser, P. B., Schow, G. S., and Hutchinson, J. M. 1982. Metabolism of chlorsulfuron by plants: Biological basis for selectivity of a new herbicide for cereals. Pestic. Biochem. Biochem. Physiol. 17:1823.Google Scholar
29. Thorne, J. H. 1986. Sieve tube unloading. Pages 211224 in Cronshaw, J., Lucas, W. J. and Giaquinta, R. T., eds. Phloem Transport. Alan R. Liss, Inc., New York.Google Scholar
30. Tyree, M. T., Peterson, C. A., and Edgington, L. V. 1979. A simple theory regarding ambimobility of xenobiotics with special reference to the nematocide, oxamyl. Plant Physiol. 63:367374.CrossRefGoogle Scholar
31. Vanden Born, W. H., Bestman, H. D., and Devine, M. D. 1988. The inhibition of assimilate translocation by chlorsulfuron as a component of its mechanism of action. Pages 6974 in Proc. Eur. Weed Res. Soc. Symp. Factors Affecting Herbicidal Activity and Selectivity.Google Scholar
32. Weisberg, L. A., Wimmers, L. E., and Turgeon, R. 1988. Photoassimilate-transport characteristics of non-chlorophyllous and green tissue in variegated leaves of Coleus blumei Benth. Planta 175:18.CrossRefGoogle Scholar