Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-27T20:19:36.343Z Has data issue: false hasContentIssue false

Selective Action of the New Herbicide 4-amino-6-(1,1-dimethylethyl)-3-(ethylthio)-1,2,4-triazin-5(4H)-one in Different Wheat, Triticum aestivum, Cultivars

Published online by Cambridge University Press:  12 June 2017

Carl Fedtke
Affiliation:
Bayer AG, Geschäftsbereich Pflanzenschutz, Anwendungstechnik, Biologische Forschung, Pflanzenschutzzentrum Monheim, 5090 Leverkusen, Fed. Rep. of Germany
Robert R. Schmidt
Affiliation:
Bayer AG, Geschäftsbereich Pflanzenschutz, Anwendungstechnik, Biologische Forschung, Pflanzenschutzzentrum Monheim, 5090 Leverkusen, Fed. Rep. of Germany

Abstract

14C-labeled 4-amino-6-(1,1-dimethylethyl)-3-(ethylthio)-1,2,4-triazin-5(4H)-one (ethiozin)3 was metabolized more rapidly in tolerant than in sensitive wheat, Triticum aestivum L., cultivars. After a 6-h herbicidal pulse, the main metabolites were conjugates at all incubation times up to 48 h. The levels of deaminated and dethioethylated metabolites never exceeded 4% of the extractable radioactivity and also did not differ between tolerant and sensitive plants. On the contrary, 92% of the extractable radioactivity was in conjugates after 24 h in the leaves of tolerant plants compared to 25% in the leaves of sensitive plants. The differently sensitive wheat cultivars conjugated metribuzin, 4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazin-5(4H)-one, at about half the rate that was observed with ethiozin. This finding may explain the fact that most wheat cultivars are more sensitive to metribuzin compared with ethiozin.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © 1988 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Eue, L., Schmidt, R. R., and Dickore, K. 1984. Selectively herbicidal 4-amino-6-tert butyl-3-ethylthio-1,2,4-triazin-5(4H)-one. U.S. Patent 4457774.Google Scholar
2. Draber, W., Büchel, K. H., Dickore, K., Trebst, A., and Pistorius, E. 1969. Structure activity correlation of 1,2,4-triazinones, a new group of photosynthesis inhibitors. Pages 17891795 in Metzner, H., ed. Progress in Photosynthesis Research. Vol. III. Institut für chemische Pflanzenphysiologie, Tübingen.Google Scholar
3. Fedtke, C. and Schmidt, R. R. 1983. Behaviour of metribuzin in tolerant and susceptible soybean varieties. Pages 177182 in Miyamoto, J. et al., eds. Human Welfare and the Environment. Pergamon Press, Oxford.Google Scholar
4. Frear, D. S., Mansager, E. R., Swanson, H. R., and Tanaka, F. S. 1983. Metribuzin metabolism in tomato: isolation and identification of N-glucoside conjugates. Pestic. Biochem. Physiol. 19:270281.CrossRefGoogle Scholar
5. Frear, D. S., Swanson, H. R., and Mansager, E. R. 1985. Alternate pathways of metribuzin metabolism in soybeans: formation of N-glucoside and homoglutathione conjugates. Pestic. Biochem. Physiol. 23:5665.CrossRefGoogle Scholar
6. Gawronski, S. W., Haderlie, L. C., and Stark, J. C. 1986. Metribuzin absorption and translocation in two barley cultivars. Weed Sci. 34:491495.CrossRefGoogle Scholar
7. Gawronski, S. W., Haderlie, L. C., and Stark, J. C. 1987. Metribuzin metabolism as the basis for tolerance in barley (Hordeum vulgare). Weed Res. 27:4955.CrossRefGoogle Scholar
8. Hack, H., Eue, L., Strang, R. H., and Zeck, W. M. 1985. SMY 1500 – A new selective herbicide for weed control in winter cereals. Pages 3942 in Br. Crop Prot. Counc., ed. Proc. Br. Crop Prot. Conf. – Weeds. Vol. 1. BCPC Publishers, Croydon.Google Scholar
9. Mobay Chemical Corp. 1982. Sencor Herbicide – Technical Information. Kansas City, Missouri 64120.Google Scholar
10. Ratliff, R. L., Peeper, T. F., Wheless, T. G., Basler, E., and Nguyen, H. 1984. Metabolism of metribuzin by two winter wheat cultivars. TAM W 101 and Vona. Proc. South. Weed Sci. Soc. 37:365.Google Scholar
11. Ratliff, R. L. and Pepper, T. F. 1987. Bromus control in winter wheat (Triticum aestivum) with the ethylthio analog of metribuzin. Weed Technol. 1:235241.CrossRefGoogle Scholar
12. Runyan, T. J., McNeil, W. K., and Peeper, T. F. 1982. Differential tolerance of wheat cultivars to metribuzin. Weed Sci. 30:9497.CrossRefGoogle Scholar
13. Shaw, D. R., Peeper, T. F., and Westerman, R. L. 1986. Persistance of phytotoxicity of metribuzin and its ethylthioanalog. Weed Sci. 34:409412.CrossRefGoogle Scholar
14. Trebst, A. and Wietoska, H. 1975. Hemmung des photosynthetischen Elektronentransports von Chloroplasten durch Metribuzin. Z. Naturforsch. 30c:499504.CrossRefGoogle Scholar