Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-27T23:30:48.389Z Has data issue: false hasContentIssue false

Resistance Mechanism to Tribenuron-Methyl in White Mustard (Sinapis alba) from Southern Spain

Published online by Cambridge University Press:  20 January 2017

Hugo Cruz-Hipolito*
Affiliation:
Department of Agricultural Chemistry and Edaphology, University of Córdoba, Spain 14071
Jesus Rosario
Affiliation:
Instituto Dominicano de Investigaciones Agropecuarias y Forestales, Dominican Republic
Gerardina Ioli
Affiliation:
Department of Agricultural Chemistry and Edaphology, University of Córdoba, Spain 14071
Maria D. Osuna
Affiliation:
Centro de Investigación Finca La Orden-Valdesequera, Spain
Reid J. Smeda
Affiliation:
Department of Plant Sciences, University of Missouri, Columbia, MO 65211
Fidel González-Torralva
Affiliation:
Department of Agricultural Chemistry and Edaphology, University of Córdoba, Spain 14071
Rafael De Prado
Affiliation:
Department of Agricultural Chemistry and Edaphology, University of Córdoba, Spain 14071
*
Corresponding author's E-mail: [email protected]

Abstract

Tribenuron-methyl has been used widely for the last 15 yr to control white mustard in cereal crops from southern Spain. Since 2007, several cases of tribenuron-methyl resistance have been reported in wheat fields. Greenhouse and laboratory studies were conducted to characterize the mechanism of suspected tribenuron-methyl resistance in a white mustard biotype (hereafter AR16) from Malaga (southern Spain). Under greenhouse conditions, the dose (g ai ha−1) inhibiting fresh weight by 50% (ED50) was 5.20 and 0.57 for the AR16 and AR3 (known susceptible) biotypes, respectively. With the use of 14C-tribenuron-methyl, absorption and translocation from treated leaves were similar between biotypes. Thin-layer chromatography indicated foliar metabolism of tribenuron-methyl was low in both R and S biotypes. Assays on the binding affinity of tribenuron-methyl on acetolactate synthase (ALS) revealed enzyme activity was reduced by 50% (I50 value) at 638.7 and 0.23 nM for the AR16 and AR3 biotypes, respectively. This resulted in 2,777-fold greater resistance to tribenuron-methyl for the AR16 compared to AR3 biotype. Sequencing the gene encoding ALS, a proline/serine amino-acid substitution, was detected in position 197 of the A domain. Based on these results, it is concluded that tribenuron-methyl resistance in the AR16 biotype is due to a target-site mutation in the ALS enzyme, resulting in a lack of affinity to tribenuron-methyl.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Beckie, H. J., Hall, L. M., Tardif, F. J., and Seguin-Swartz, G. 2007. Acetolactate 179 synthase inhibitor-resistant stinkweed (Thlaspi arvense L.) in Alberta. Can. J. Plant Sci. 87:965972.Google Scholar
Boutsalis, P., Karotam, J., and Powles, S. B. 1999. Molecular basis of resistance to acetolactate synthase–inhibiting herbicides in Sisymbrium orientale and Brassica tournefortii . Pestic. Sci. 55:507516.3.0.CO;2-G>CrossRefGoogle Scholar
Bradford, M. M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72:248254.CrossRefGoogle Scholar
Christoffers, J. M., Nandula, V. K., Howatt, K. A., and Wehking, T. R. 2006. Target-site resistance to acetolactate synthase inhibitors in wild mustard (Sinapis arvensis). Weed Sci. 54:191197.CrossRefGoogle Scholar
Christopher, J. T., Powles, S. B., and Holtum, J.A.M. 1992. Resistance to acetolactate synthase inhibitor herbicides in annual ryegrass (Lolium rigidum). Plant Physiol. 100:19091913.CrossRefGoogle ScholarPubMed
Christopher, J. T., Powles, S. B., Liljegren, D. R., and Holtum, J. A. M. 1991. Cross-resistance to herbicides in annual ryegrass (Lolium rigidum). Plant Physiol. 95:10361043.CrossRefGoogle ScholarPubMed
Cruz-Hipolito, H., Osuna, M. D., Vidal, R. A., and De Prado, R. 2009a. Resistant mechanism to bensulfuron-methyl in biotypes of Scirpus mucronatus L. collected in Chilean rice fields. J. Agric. Food Chem. 57:42734278.CrossRefGoogle ScholarPubMed
Cruz-Hipolito, H., Smeda, R. J., Ioli, G., Rojano, A., Rosario, J. M., and De Prado, R. 2009b. Cross resistance of white mustard to ALS-inhibiting herbicides: first case in the world. In: 13th International conference on Weed Biology, Dijon, France, September 8 to 10, 2009., 100 p.Google Scholar
Cruz-Hipolito, H. E., Osuna, M. D., Domínguez-Valenzuela, J. A., González, F., Medina-Pitalúa, J. L., and De Prado, R. 2008. Resistencia de Sinapis alba a inhibidores de la ALS: primer caso en el mundo. In: XXIX Congreso de la ASOMECIMA, Chiapas, México, October 22 to 24, Pp. 159164.Google Scholar
Duggleby, R. G., McCourt, J. A., and Guddat, L. 2008. Structure and mechanism of inhibition of plant acetohydroxyacid synthase. Plant Physiol. Biochem. 46:309324.CrossRefGoogle ScholarPubMed
Duggleby, R. G. and Pang, S. S. 2000. Acetohydroxyacid synthase. J. Biochem. Mol. Biol. 33:136.Google Scholar
Duran-Prado, M., Osuna, M. D., De Prado, R., and Franco, A. R. 2004. Molecular basis of resistance to sulfonylureas in Papaver rhoeas . Pest. Biochem. Physiol. 79:1017.CrossRefGoogle Scholar
Hai-Ian, C., Chao-xian, Z., Hong-jun, Z., Hong-juan, H., Shou-hui, W., Xue, L., Guiqi, W., and Yan, L. 2009. Tribenuron-methyl resistant flixweed (Descurainia sophia). Agric. Sci. China 10:8691.Google Scholar
Hall, L. M., Stromme, K. M., Horsman, G. P., and Devine, M. D. 1998. Resistance to acetolactate synthase inhibitors and quinclorac in a biotype of false cleavers (Galium spurium). Weed Sci. 46:390396.CrossRefGoogle Scholar
Heap, I. 2012. International Survey of Herbicide Resistant Weeds. Annual Report Internet. http://www.weedscience.com. Accessed April 22, 2012.Google Scholar
Jian, S., Jin-xin, W., Hong-jun, Z., Jun-liang, L., and Sheng-nan, B. 2011. Study on mutations in ALS for resistance to tribenuron-methyl in Galium aparine L. Agric. Sci. China 10:8691.Google Scholar
Kaloumenos, N. S., Dordas, C. A., Diamantidis, G. C., and Eleftherohorinos, I. G. 2009. Multiple Pro197 substitutions in the acetolactate synthase of corn poppy (Papaver rhoeas) confer resistance to tribenuron. Weed Sci. 57:362368.CrossRefGoogle Scholar
Kuk, Y. I., Jung, H. I., Kwon, O. D., Lee, D. J., Burgos, N. R., and Guh, J. O. 2003. Sulfonylurea herbicide-resistant Monochoria vaginalis in Korean rice culture. Pest Manag. Sci. 59:949961.CrossRefGoogle ScholarPubMed
McCourt, J. A. and Duggleby, R. G. 2006. Acetohydroxyacid synthase and its role in the biosynthetic pathway for branched-chain amino acids. Amino Acids 31:173210.CrossRefGoogle ScholarPubMed
McCourt, J. A., Pang, S. A., Scott, J. K., Guddat, L. W., and Duggleby, R. G. 2006. Herbicide-binding sites revealed in the structure of plant acetohydroxyacid synthase. Proc. Natl. Acad. Sci. 103:569573.CrossRefGoogle ScholarPubMed
Merotto, A., Jasieniuk, M., and Fischer, A. J. 2010. Distribution and cross-resistance patterns of ALS-inhibiting herbicide resistance in smallflower umbrella sedge (Cyperus difformis). Weed Sci. 58:2229.CrossRefGoogle Scholar
Moss, S. R. and Cussans, G. W. 1991. The development of herbicide resistant populations of Alopecurus myosuroides (black-grass) in England. pp. 445456 in Caseley, J. C., Cussans, G. W., and Atkin, R. K., eds. Herbicide Resistance in Weeds and Crops. Oxford, United Kingdom Butterworth-Heinemann.Google Scholar
Osuna, M. D., Fischer, A. J., and De Prado, R. 2003. Herbicide resistance in Aster quamatus conferred by less sensitive form of acetolactate synthase. Pest Manag. Sci. 59:12101216.CrossRefGoogle ScholarPubMed
Park, K. W., Fandrich, L., and Mallory-Smith, C. A. 2004. Absorption, translocation, and metabolism of propoxycarbazone-sodium in ALS-inhibitor resistant Bromus tectorum biotypes. Pest. Biochem. Physiol. 79:1824.CrossRefGoogle Scholar
Powles, S. B. and Yu, Q. 2010. Evolution in action: plants resistant to herbicides. Annu. Rev. Plant Biol. 61:317347.CrossRefGoogle ScholarPubMed
Preston, C., Stone, L. M., Rieger, M. A., and Baker, J. 2006. Multiple effects of a naturally occurring proline to threonine substitution within acetolactate synthase in two herbicide-resistant populations of Lactuca serriola . Pestic. Biochem. Physiol. 84:227235.CrossRefGoogle Scholar
Rosario, J. M., Cruz-Hipolito, H., Smeda, R., and De Prado, R. 2011. White mustard (Sinapis alba) resistance to ALS-inhibiting herbicides and alternative herbicides for control in Spain. Eur. J. Agron. 57:5762.CrossRefGoogle Scholar
Saari, L. L., Cotterman, J. C., and Thill, D. C. 1994. Resistance to acetolactate synthase inhibiting herbicides. pp. 83143 in S. B. Powles and J. Holtum, eds. Herbicide Resistance in Plants. Boca Raton, FL CRC Press.Google Scholar
Singh, B., Schmitt, G., Lillis, M., Hand, J. M., and Misra, R. 1991. Over-expression of acetohydroxyacid synthase from Arabidopsis as an inducible fusion protein in Escherichia coli . Plant Physiol. 97:657662.CrossRefGoogle Scholar
Tranel, P. J., Jiang, W., Patzoldt, W. L., and Wright, T. R. 2004. Intraspecific variability of the acetolactate synthase gene. Weed Sci. 52:236241.CrossRefGoogle Scholar
Tranel, P. J. and Wright, T. R. 2002. Resistance of weeds to ALS-inhibiting herbicides: what have we learned? Weed Sci. 50:700712.CrossRefGoogle Scholar
Tranel, P. J., Wright, T. R., and Heap, I. M. 2010. Mutations in herbicide-resistant weeds to ALS inhibitors. Weeds. http://www.weedscience.com. Accessed February 12, 2010.Google Scholar
Veldhuis, L. J., Hall, L. M., O'Donovan, J. T., Dyer, W., and Hall, J. C. 2000. Metabolism-based resistance of a wild mustard (Sinapis arvensis L.) biotype to ethametsulfuron-methyl. J. Agric. Food Chem. 48:29862990.CrossRefGoogle ScholarPubMed
Warwick, S. I., Sauder, C., and Beckie, H. 2005. Resistance in Canadian biotypes of wild mustard (Sinapis arvensis) to acetolactate synthase inhibiting herbicides. Weed Sci. 53:631639.CrossRefGoogle Scholar
Whaley, C. M., Wilson, H. P., and Westwood, J. H. 2006. ALS resistance in several smooth pigweed (Amaranthus hybridus) biotypes. Weed Sci. 54:828832.CrossRefGoogle Scholar
Xu, X., Wang, G. Q., Chen, S. L., Fan, C. Q., and Li, B. H. 2010. Confirmation of flixweed (Descurainia sophia) resistance to tribenuron-methyl, using three different assay methods. Weed Sci. 58:5660.CrossRefGoogle Scholar
Yu, Q., Abdallah, I., Han, H., Owen, M., and Powles, S. B. 2009. Distinct non-target site mechanisms endow resistance to glyphosate, ACCase and ALS-inhibiting herbicides in multiple herbicide-resistant Lolium rigidum . Planta 230:713723.CrossRefGoogle ScholarPubMed
Yu, Q., Zhang, X. Q., Hashem, A., Walsh, M. J., and Powles, S. B. 2003. ALS gene proline (197) mutations confer ALS herbicide resistance in eight separated wild radish (Raphanus raphanistrum) populations. Weed Sci. 51:831838.CrossRefGoogle Scholar
Zheng, D., Patzoldt, W., and Tranel, P. 2005. Association of the W574L ALS substitution with resistance to cloransulam and imazamox in common ragweed (Ambrosia artemisiifolia). Weed Sci. 53:424430.CrossRefGoogle Scholar