Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-28T03:42:31.929Z Has data issue: false hasContentIssue false

Propanil and TCAB Residues in Rice Soils

Published online by Cambridge University Press:  12 June 2017

P. C. Kearney
Affiliation:
Crops Research Division, Agr. Res. Serv., U. S. Dep. of Agr., Beltsville, Maryland
R. J. Smith Jr.
Affiliation:
Crops Research Division, Agr. Res. Serv., U. S. Dep. of Agr., Stuttgart, Arkansas
J. R. Plimmer
Affiliation:
Crops Research Division, Agr. Res. Serv., U. S. Dep. of Agr., Beltsville, Maryland
F. S. Guardia
Affiliation:
Crops Research Division, Agr. Res. Serv., U. S. Dep. of Agr., Beltsville, Maryland

Abstract

We surveyed soils that produce rice (Oryza Sativa L.) at the University of Arkansas Rice Branch Experiment Station at Stuttgart, Arkansas, to determine whether residues of 3, 3′,4,4′-tetrachloroazobenzene (hereinafter referred to as TCAB) accumulated with repeated applications of 3′,4′-dichloropropionanilide (propanil). We sampled Crowley silt loam with known histories of propanil application to determine the effect of depth, rate, and time on TCAB formation. Propanil and TCAB were measured by electron capture gas chromatography. Low concentrations of TCAB (<0.2 ppm) generally were detected in the surface 0 to 10.1-cm layer of soil receiving applications of propanil at rates of 6.7 kg/ha. Concentration and occurrence of TCAB decreased with increasing time and depth in soil.

Type
Research Article
Copyright
Copyright © 1970 Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Bartha, R., Lanzilotta, R. P., and Pramer, D. 1967. Stability and effects of some pesticides in soil. J. Appl. Microbiol. 15:6775.Google Scholar
2. Bartha, R. and Pramer, D. 1967. Pesticide transformations to aniline and azo compounds in soil. Science 156:16171618.CrossRefGoogle ScholarPubMed
3. Bartha, R. and Bordeleau, L. M. 1969. Cell-free peroxidases in soil. Soil Biol. Biochem. 1:139143.CrossRefGoogle Scholar
4. Corbett, J. R. and Holt, P. F. 1963. Dehalogenation during the reduction of halogenonitroarenes with lithium aluminium hydride. J. Chem. Soc. pp. 23852387.Google Scholar
5. Daniels, D. G. H. and Saunders, B. C. 1953. Studies on peroxidase action. Part VIII. The oxidation of p-chloroaniline. A reaction involving dechlorination. J. Chem. Soc. pp. 822826.CrossRefGoogle Scholar
6. Frear, D. S. and Still, G. G. 1968. The metabolism of 3,4-dichloropropionanilide in plants. Partial purification and properties of an aryl acylamidase from rice. Phytochemistry 7:913920.Google Scholar
7. Kearney, P. C., Plimmer, J. R., and Guardia, F. B. 1969. Mixed chloroazobenzene formation in soil. J. Agr. Food Chem. 17:14181419.Google Scholar
8. Smith, R. J. Jr. 1965. Propanil and mixtures with propanil for weed control in rice. Weeds 13:236238.CrossRefGoogle Scholar
9. Still, G. G. and Mansager, E. R. 1969. The presence of 3,4-dichloroaniline in rice grain hydrolysates. Weed Res. 9:218224.CrossRefGoogle Scholar
10. Still, G. G. 1969. 3,3′,4,4′-tetrachloroazobenzene: Its translocation and metabolism in rice plants. Weed Res. 9:224241.Google Scholar
11. Weed Society of America. 1967. Herbicide Handbook, p. 117119. 1st Ed. W. F. Humphrey Press, Inc., Geneva, N. Y. Google Scholar
12. Yih, R. Y., McRae, D. H., and Wilson, H. F. 1968. Mechanism of selective action of 3′,4′-dichloropropionanilide. Plant Physiol. 43:12911296.CrossRefGoogle Scholar