Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-05T12:42:51.360Z Has data issue: false hasContentIssue false

Prevention of fungal diseases in transgenic, bialaphos- and glufosinate-resistant creeping bentgrass (Agrostis palustris)

Published online by Cambridge University Press:  12 June 2017

Chien-An Liu
Affiliation:
Department of Crop and Soil Sciences, Michigan State University, East Lansing, MI 48824
Heng Zhong
Affiliation:
Department of Crop and Soil Sciences, Michigan State University, East Lansing, MI 48824
Joseph Vargas
Affiliation:
Department of Botany and Plant Pathology, Michigan State University, East Lansing, MI 48824
Donald Penner
Affiliation:
Department of Crop and Soil Sciences, Michigan State University, East Lansing, MI 48824
Mariam Sticklen*
Affiliation:
Department of Crop and Soil Sciences, Michigan State University, East Lansing, MI 48824
*
Corresponding author. [email protected]

Abstract

The antifungal activity of the herbicides bialaphos and glufosinate, the active moiety of bialaphos, was assessed. Bialaphos showed a higher level of in vitro antifungal activity against Rhizoctonia solani, Sclerotinia homoeocarpa, and Pythium aphanidermatum than glufosinate. Glufosinate suppressed the mycelial growth of R. solani and S. homoeocarpa, but it had no inhibitory effect on P. aphanidermatum up to the highest concentration in our testing regimes. Various concentrations of bialaphos solutions were applied to transgenic, bialaphos- and glufosinate-resistant creeping bentgrass inoculated with fungal pathogens. Bialaphos applications were able to significantly reduce symptomatic infection by R. solani and S. homoeocarpa on transgenic plants. Bialaphos significantly inhibited P. aphanidermatum, but not to the same degree that R. solani and S. homoeocarpa were inhibited. These results indicate that bialaphos may provide a means for the simultaneous control of weeds and fungal pathogens in turf areas with transgenic, bialaphos-resistant creeping bentgrass.

Type
Special Topics
Copyright
Copyright © 1998 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Akama, K., Puchta, H., and Hohn, B. 1995. Efficient Agrobacterium-mediated transformation of Ambidopsis thaliana using the bar gene as selectable marker. Plant Cell Rep. 14:450454.CrossRefGoogle Scholar
Altman, J. 1981. Effect of trifluralin on Rhizoctonia development in pinto beans. Phytopathology 71: 199.Google Scholar
Altman, J. 1985. Impact of herbicides on plant diseases. Pages 227231 in Parker, C. A., Rovira, A. D., Moore, K. J., Wong, P.T.W., and Kollmorgen, J. F., eds. Ecology and Management of Soilborne Plant Pathogens. St. Paul, MN: American Phytopathological Society.Google Scholar
Bayer, E., Gugel, K. H., Haebele, K., Hagenmaier, H., Jessipow, S., Koenig, W. A., and Zaehner, H. 1972. Phosphinothricin und phosphinothricyl-alanin. Helv. Chim. Acta 55: 224239.CrossRefGoogle Scholar
Beard, J. B. 1982. Turf Management for Golf Courses. New York: Macmillan Publishing Company, pp. 119124.Google Scholar
Ben-Yephet, Y., Siti, E., and Frank, Z. R. 1983. Control of Verticillium dahliae by metamsodium in loessial soil and effect on potato tuber yields. Plant Dis. 67: 12231225.CrossRefGoogle Scholar
Black, B. D., Russin, J. S., Griffin, J. L., and Snow, J. P. 1996. Herbicide effects on Rhizoctonia solani in vitro and Rhizoctonia foliar blight of soybean (Glycine max). Weed Sci. 44: 711716.CrossRefGoogle Scholar
Casas, A. M., Kononowicz, A. K., Zehr, U. B., Tomes, D. T., Axtell, J. D., Butler, L. G., Bressan, R. A., and Hasegawa, P. M. 1993. Transgenic sorghum plants via microprojectile bombardment. Proc. Natl. Acad. Sci. U.S.A. 90: 1121211216.CrossRefGoogle ScholarPubMed
Christou, P., Ford, T. L., and Kofron, M. 1991. Production of transgenic rice (Oryza sativa L.) plants from agronomically important Indica and Japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos. Bio/Technology 9: 957962.CrossRefGoogle Scholar
Cohen, R., Riov, J., Lisker, N., and Katan, J. 1986. Involvement of ethylene in herbicide-induced resistance to Fusarium oxysporum f. ssp. melonis . Phytopathology 76: 12811285.CrossRefGoogle Scholar
De Block, M., Botterman, J., Vandewiele, M., et al. 1987. Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J. 6: 25132518.CrossRefGoogle Scholar
De Block, M., De Brouwer, D., and Tenning, P. 1989. Transformation of Brassica napus and Brassica oleracea using Agrobacterium tumefaciens and the expression of the bar and neo genes in the transgenic plants. Plant Physiol. 91: 694701.CrossRefGoogle ScholarPubMed
D'Halluin, K., De Block, M., Denecke, J., Janssens, J., Leemans, J., Reynaerts, A., and Botterman, J. 1992. The bar gene as a selectable and screenable marker in plant engineering. Pages 216, 415—426 in Wu, R., ed. Methods in Enzymology. San Diego, CA: Academic Press.Google Scholar
El-Khadem, M., Zahran, M., and El-Kassaz, M. K. 1979. Effect of the herbicides trifluralin, dinitramine, and fluometuron on Rhizoctonia disease in cotton. Plant Soil 51: 463470.CrossRefGoogle Scholar
Grinstein, A., Elad, Y., Katan, J., and Chet, I. 1979. Control of Sclerotium rolfsii by means of a herbicide and Trichoderma harzianum . Plant Dis. Rep. 63:823826.Google Scholar
Grinstein, A., Lisker, N., Katan, J., and Eshel, Y. 1984. Herbicide-induced resistance to plant wilt diseases. Physiol. Plant Pathol. 24: 347356.CrossRefGoogle Scholar
Hoerlein, G. 1994. Glufosinate (phosphinothricin), a natural amino acid with unexpected herbicidal properties. Pages 73145 in Ware, G. W., ed. Reviews of Environmental Contamination and Toxicology. New York: Springer-Verlag.CrossRefGoogle Scholar
Joy, K. M. 1988. Ammonia, glutamine, and asparagine: a carbon-nitrogen interface. Can. J. Bot. 66: 21032109.CrossRefGoogle Scholar
Leason, M., Dunliffe, D., Parkin, D., Lea, P. J., and Miflin, B. J. 1982. Inhibition of pea leaf glutamine synthetase by methionine sulphoximine, phosphinothricin and other glutamate analogues. Phytochemistry 21: 855857.CrossRefGoogle Scholar
Miflin, B. J. and Lea, P. J. 1977. Amino acid metabolism. Ann. Rev. Plant Physiol. 28: 299329.CrossRefGoogle Scholar
Murakami, T, Anzai, H., Imai, S., Satoh, A., Nagaoka, K., and Thompson, C. J. 1986. The bialaphos biosynthetic genes of Streptomyces hygroscopicus: molecular cloning and characterization of the gene cluster. Mol. Gen. Genet. 205: 4250.CrossRefGoogle Scholar
Ogawa, Y., Tsuruoka, T., Inouye, S., and Niida, T. 1973. Chemical structure of antibiotic SF-1293. Sci. Reports of Meiji Seika Kaisha 13: 4248; Chem. Abstr. 1974, 81:37806r.Google Scholar
Powell, J. F. 1993. Utilization of Bacterial Metabotiles for the Management of Fungal Turfgrass Pathogens. . Michigan State University, East Lansing, MI, pp. 5658.Google Scholar
Smiley, R. W. 1983. Compendium of Turfgrass Diseases. St. Paul, MN: The American Phytopathological Society, pp. 1172.Google Scholar
Somers, D. A., Rines, H. W., Gu, W., Kaeppler, H. F., and Bushnell, W. R. 1992. Fertile, transgenic oat plants. Bio/Technology 10: 15891594.Google Scholar
Southern, E. M. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98: 503517.CrossRefGoogle ScholarPubMed
Spencer, T. M., Gordon-Kamm, W. J., Daines, R. J., Start, W. G., and Lemaux, P. G. 1990. Bialaphos selection of stable transformants from maize cell culture. Theor. Appl. Genet. 79: 625631.CrossRefGoogle ScholarPubMed
Suzuki, T., Moriya, C., and Yoshida, J. 1973. Isolation and physico-chemical and biological characterization of SF-1293 substance. Sci. Reports of Meiji Seika Kaisha 13: 3441; Chem. Abstr. 1974, 81:89705b.Google Scholar
Tachibana, K., Watanabe, T., Sekizawa, Y., and Takematsu, T. 1986a. Inhibition of glutamine synthetase and quantitative changes of free amino acids in shoots of bialaphos treated Japanese barnyard millet. J. Pestic. Sci. 11: 2731.CrossRefGoogle Scholar
Tachibana, K., Watanabe, T., Sekizawa, Y., and Takematsu, T. 1986b. Action mechanism of bialaphos. II. Accumulation of ammonia in plants treated with bialaphos. J. Pestic. Sci. 11: 3337.Google Scholar
Thompson, C. J., Movva, N. R., Tizard, R., Crameri, R., Davies, J. E., Lauwereys, M., and Botterman, J. 1987. Characterization of the herbicideresistance gene bar from Streptomyces hygroscopicus . EMBO J. 6: 25192523.CrossRefGoogle ScholarPubMed
Uchimiya, H., Iwata, M., Nojiri, C., et al. 1993. Bialaphos treatment of transgenic rice plants expressing a bar gene prevents infection by the sheath blight pathogen (Rhizoctonia solani). Bio/Technology 11: 835836.Google Scholar
Upchurch, R. G., Meade, M. J., Hightower, R. C., Thomas, R. S., and Callahan, T. M. 1994. Transformation of the fungal soybean pathogen Cercospora kikuchii with the selectable marker bar . Appl. Environ. Microbiol. 60: 45924595.CrossRefGoogle ScholarPubMed
Wadsworth, G. J., Redinbaugh, M. G., and Scandalios, J. G. 1988. A procedure for the small-scale isolation of plant RNA suitable for RNA blot analysis. Anal. Biochem. 172: 279283.CrossRefGoogle ScholarPubMed
Wan, Y. and Lemaux, P. G. 1994. Generation of large numbers of independently transformed fertile barley plants. Plant Physiol. 104: 3748.CrossRefGoogle ScholarPubMed
Zhong, H., Bolyard, M. G., Srinivasan, C., and Sticklen, M. B. 1993. Transgenic plants of turfgrass (Agrostis palustris Huds.) from microprojectile bombardment of embryogenic callus. Plant Cell Rep. 13:16.CrossRefGoogle ScholarPubMed
Zhong, H., Sun, B., Warkentin, D., Zhong, S., Wu, R., Wu, T., and Sticklen, M. B. 1996. The competence of maize shoot meristems for integrative transformation and inherited expression of transgenes. Plant Physiol. 110: 10971107.CrossRefGoogle ScholarPubMed