Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-09T07:36:48.993Z Has data issue: false hasContentIssue false

Pollen Viability, Pollination, Seed Set, and Seed Germination of Croftonweed (Eupatorium adenophorum) in China

Published online by Cambridge University Press:  20 January 2017

Hongfei Lu*
Affiliation:
College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China Key Laboratory of Photosynthesis and Molecular Environment Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
Jinbo Shen
Affiliation:
College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China
Weiguo Sang
Affiliation:
Key Laboratory of Photosynthesis and Molecular Environment Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
Xinyi Zhang
Affiliation:
College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China
Jinxing Lin
Affiliation:
Key Laboratory of Photosynthesis and Molecular Environment Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
*
Corresponding author's E-mail: [email protected]

Abstract

Croftonweed has established itself as a pernicious weed in China. Experiments were conducted to test for anemophily, self-pollination, hand crossing, and apomixis. Additionally, pollen viability, seed set, and seed viability were investigated. Pollen cultured in vitro with the use of 14 culture media did not germinate, nor did self- or cross-pollen germinate on the stigma, and no pollen tubes were seen in the style. Young embryos developed into globular- or heart-shaped embryos before the opening of the captimulum, although neither meiosis to form an embryo sac nor fertilization occurred. Furthermore, seeds developed normally after closed flowers were emasculated and bagged. The plump seed ratio (plump seeds/total seeds) from apomixis (emasculation and bagged treatment) was high (41 ± 17.0%), and plump seed germination ratio exceeded 50%. These results provided additional evidence for the previous conclusion that croftonweed reproduces by apomixis. Apomixis, high seed production, and high seed germination may explain why this weed spreads so rapidly.

Type
Weed Biology and Ecology
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Andrews, A. C. and Falvey, L. 1979. The ecology of Eupatorium adenophorum in native and improved pastures in northern Thailand highlands. in. Proceedings of the Seventh Asian-Pacific Weed Science Society Conference. Sydney, Australia Asian-Pacific Weed Science Society. 351353.Google Scholar
Arya, M. P. S. and Singh, R. V. 1998. Evaluation of herbicides for the control of croften weed (Eupatorium adenophorum Sprengel) for different land use. Indian J. Weed Sci. 30:179181.Google Scholar
Asker, S. E. and Jerling, L. 1992. Apomixis in Plants. London CRC. 298.Google Scholar
Auld, B. A. 1969a. Incidence of damage caused by organisms which attack crofton weed in the Richmond-Tweed region of New South Wales. Aust. J. Sci. 32:163.Google Scholar
Auld, B. A. 1969b. The distribution of Eupatorium adenophorum Spreng. on the far north coast of New South Wales. J. Proc. R. Soc. N. S. W. 102:159161.Google Scholar
Auld, B. A. 1972. Chemical control of Eupatorium adenophorum, crofton weed. Trop. Grassl. 6:5560.Google Scholar
Auld, B. A. and Martin, P. M. 1975. The autecology of Eupatorium adenophorum Spreng in Australia. Weed Res. 15:2731.Google Scholar
Bernal, C., Palomares, G., and Susín, I. 2005. Establishment of a germination medium for artichoke pollen and its relationship with seed production. Acta Hortic. 681:291300.CrossRefGoogle Scholar
Bertasso-Borges, M. S. and Coleman, J. R. 1998. Embryology and cytogenetics of Eupatorium pauciflorum and E. intermedium (Compositae). Genet. Mol. Biol. 21:507514.CrossRefGoogle Scholar
Bertasso-Borges, M. S. and Coleman, J. R. 2005. Cytogenetics and embryology of Eupatorium laevigatum (Compositae). Genet. Mol. Biol. 28:123128.Google Scholar
Bess, H. A. and Haramoto, F. H. 1958. Biological control of Pamakani. Eupatorium adenophorum. In Hawaii by a Tephritid gall fly. Procecidochares utilis. 1. The life history of the fly and its effectiveness in the control of the weed. in. Proceedings of the 10th International Congress of Entomology. Montreal, Canada. 543548.Google Scholar
Bicknell, R. A. 1997. Isolation of a diploid, apomictic plant of Hieracium aurantiacum . Sex. Plant Reprod. 10:168172.CrossRefGoogle Scholar
Chen, Z. H. and Zhang, D. M. 1999. Seed germination and seedling growth of 24 tree species in lower subtropical forest. J. Trop. Subtrop. Bot. 7:3746. [In Chinese with English abstract].Google Scholar
Coleman, J. R. 1989. Embryology and cytogenetics of apomictic hexaploid Eupatorium odoratum L. (Compositae). Rev. Bras. Genet. 12:803817.Google Scholar
Coleman, J. R. and Coleman, M. A. 1984. Apomixis in two triploid Brazilian species of Eupatorium: E. bupleurifolium and E. callilepis . Rev. Bras. Genet. 7:549567.Google Scholar
Coleman, J. R. and Coleman, M. A. 1988. Embryology and cytogenetics of apomictic triploid Eupatorium squalidum DC (Compositae). Rev. Bras. Genet. 11:129148.Google Scholar
Coulibaly, I., Louarn, J., Lorieux, M., Charrier, A., Hamon, S., and Noirot, M. 2003. Pollen viability restoration in a Coffea canephora P. and C. heterocalyx Stoffelen backcross QTL identification for marker-assisted selection. Theor. Appl. Genet. 106:311316.Google Scholar
Dafni, A. and Firmage, D. 2000. Pollen viability and longevity: Practical, ecological and evolutionary implications. Plant Syst. Evol. 222:113132.CrossRefGoogle Scholar
Dodd, A. P. 1961. Biology control of Eupatorium adenophorum in Queensland. Aust. J. Sci. 23:356365.Google Scholar
Dupont, Y. L. 2002. Evolution of apomixis as a strategy of colonization in the dioecious species Lindera glauca (Lauraceae). Popul. Ecol. 44:293297.Google Scholar
Eenink, A. H. 1983. Preliminary results of research on storage and in vitro germination of lettuce pollen as an aid in lettuce breeding. Euphytica. 32:521526.Google Scholar
Evans, R. A., Young, J. A., and Hawkes, R. 1979. Germination characteristics of Italian thistle (Carduus pycnocephalus) and slenderflower thistle (Carduus tenuiflorus). Weed Sci. 27:327332.Google Scholar
Faegri, K. and van der Pijl, L. 1979. The principles of pollination ecology. New York Pergamon.Google Scholar
Finer, M. S. and Morgan, M. T. 2003. Effects of natural rates of geitonogamy on fruit set in Asclepias speciosa (Apocynaceae): Evidence favoring the plant's dilemma. Am. J. Bot. 90:17461750.Google Scholar
Fritz, S. E. and Lukaszewski, A. J. 1989. Pollen longevity in wheat, rye and Triticale. Plant Breeding. 102:3134.Google Scholar
Fryxell, P. A. 1957. Mode of reproduction of higher plants. Bot. Rev. 23:135233.Google Scholar
Fuller, T. C. 1981. Introduction and spread of Eupatorium adenophorum in California. in. Proceedings of the Eighth Asian-Pacific Weed Science Society Conference. Sacramento, CA Asian-Pacific Weed Science Society. 277280.Google Scholar
Grashoff, J. L. and Beaman, J. H. 1970. Studies in Eupatorium (Compositae), III Apparent Wind Pollination. Brittonia. 22:7784.CrossRefGoogle Scholar
He, P. and Liu, Y. 2003. The investigation of invasive plant species in natural grassland at Liangshan, Sichuan Province. Pratacultural Sci. 20:3133. [in Chinese with English abstract].Google Scholar
Henson, S. E., Skroch, W. A., Burton, J. D., and Worsham, A. D. 2003. Herbicide efficacy using a wet-blade application system. Weed Technol. 2:320324.Google Scholar
Holmgren, I. 1919. Zytologische studien uber die fortpflanzung bei den gattungen Erigeron und Eupatorium . Sv. Vet. Akad. Hdl. 59:1118.Google Scholar
Hoy, J. M. 1960. Establishment of Procecidochares utilis Stone (Diptera: Trypetidae) on Eupatorium adenophorum Spreng. in New Zealand. N. Z. J. Sci. 3:200208.Google Scholar
Huang, Z. H., Zhu, J. M., Mu, X. J., and Lin, J. X. 2004. Pollen dispersion, pollen viability and pistil receptivity in Leymus chinensis . Ann. Bot. 93:295301.Google Scholar
Kelen, M. and Demirtas, I. 2003. Pollen viability, germination capability and pollen production level of some grape varieties (Vitis vinifera L). Acta Physiol. Plant. 25:229233.Google Scholar
Kim, Y. H., Kim, S. K., Park, J. M., Lim, S. C., Youn, C. K., Lee, B. A., Youn, T., and Kim, T. S. 2003. Effects of physical properties of bagging papers and changes of microclimate in the bags on coloration and quality of peach fruits. J. Korean Soc. Hortic. Sci. 44:483488.Google Scholar
King, R. M., Kyhos, D. W., Powell, A. M., Raven, P. H., and Robinson, H. 1976. Chromosome numbers in Compositae. XIII. Eupatorieae. Ann. Mo. Bot. Gard. 63:862888.Google Scholar
King, R. M. and Robinson, H. 1967. Multiple pollen forms in two species of the genus Stevia (Compositae). Sida. 3:165169.Google Scholar
King, R. M. and Robinson, H. 1987. The genera of the Eupatorieae (Asteraceae). Monogr. Syst. Bot. Mo. Bot. Gard. 22:1576.Google Scholar
Kluge, R. L. 1991. Biological control of crofton weed, Ageratina adenophora (Asteraceae), in South Africa. Agric. Ecosyst. Environ. 37:187191.CrossRefGoogle Scholar
Koltunow, A. M. 1993. Apomixis: Embryo sacs and embryos formed without meiosis or fertilization in ovules. Plant Cell. 5:14251437.Google Scholar
Leduc, N., Monnier, M., and Douglas, G. C. 1990. Germination of trinucleated pollen: Formulation of a new medium for Capsella bursa-pastoris . Sex. Plant Reprod. 3:228235.CrossRefGoogle Scholar
Liu, L. H., Xie, S. C., and Zhang, J. H. 1985. Studies on the distribution, harmfulness and control of Eupatorium adenophorum Spreng. Acta Ecol. Sin. 5:16. [In Chinese with English summary].Google Scholar
Liu, W. Y., Liu, L. H., and Zheng, Z. 1988. Photosynthetic characteristics of Eupatorium adenophorum and their ecological significance. Acta Bot. Yunnanica. 10:175181. [In Chinese with English summary].Google Scholar
Lu, P., Sang, W., and Ma, K. 2006. Effects of environmental factors on germination and emergence of Crofton weed (Eupatorium adenophorum). Weed Sci. 54:452457.Google Scholar
Macdonald, G. E., Brecke, B. J., Colvin, D. L., and Shilling, D. G. 1994. Chemical and mechanical control of dogfennel (Eupatorium capillifolium). Weed Technol. 3:483487.Google Scholar
Maisonneuve, B. and Philouze, J. 1982. Effect of low night temperature on a collection of varieties of tomato (L. esculentum). I. Study of pollen quantity and quality. Agronomie. 2:453458.CrossRefGoogle Scholar
Mogie, M. 1992. The evolution of asexual reproduction in plants. London Chapman Hall.Google Scholar
Montaner, C., Floris, E., and Alvarez, J. M. 2003. Study of pollen cytology and evaluation of pollen viability using in vivo and in vitro test, in borage (Borago officinalis L). Grana. 42:3337.Google Scholar
Mulugeta, D., Maxwell, B. D., Fay, P. K., and Dyer, W. E. 1994. Kochia (Kochia scoparia) pollen dispersion, viability and germination. Weed Sci. 42:548552.Google Scholar
Nogler, G. A. 1984. Gametophytic apomixis. in Johri, B.M., ed. Embryology of angiosperms. New York Springer. 475518.CrossRefGoogle Scholar
Pitcairn, M. J., Young, J. A., Clements, C. D., and Balciunas, J. O. E. 2002. Purple starthistle (Centaurea calcitrapa) seed germination. Weed Technol. 16:452456.CrossRefGoogle Scholar
Pline, W. A., Edmisten, K. L., Oliver, T., Wilcut, J. W., Wells, R., and Allen, N. S. 2002. Use of digital image analysis, viability stains, and germination assays to estimate conventional and glyphosate-resistant cotton pollen viability. Crop Sci. 42:21932200.Google Scholar
Pupilli, F., Martinez, E. J., Busti, A., Calderini, O., Quarin, C. L., and Arcioni, S. 2004. Comparative mapping reveals partial conservation of synteny at the apomixis locus in Paspalum spp. Mol. Genet. Genomics. 270:539548.Google Scholar
Rao, P. B. 1988. Effects of environmental factors on germination and seedling growth in Quercus floribunda and Cupressus torulosa tree species of central Himalaya India. Ann. Bot. 61:531540.Google Scholar
Richards, A. J. 1986. Plant breeding systems. Cambridge, UK Cambridge University Press.Google Scholar
Rozenblum, E., Maldonado, S., and Waisman, C. E. 1988. Apomixis in Eupatorium tanacetifolium (Compositae). Am. J. Bot. 75:311322.Google Scholar
Saini, J. P. 2002. Chemical control of Eupatorium (Chromolaena adenophorum L.) in Himachal Pradesh. Indian J. Weed Sci. 34:156157.Google Scholar
Sedgley, M. and Harbard, J. 1993. Pollen storage and breeding system in relation to controlled pollination of four species of Acacia (Leguminosae: Mimosoideae). Aust. J. Bot. 41:601609.Google Scholar
Selbo, S. M. and Carmichael, J. S. 1999. Reproductive biology of leafy spurge (Euphorbia esula L.): breeding system analysis. Can. J. Bot. 77:16841688.Google Scholar
Sharma, K. C. 1977. Reports on studies on the biological control of Eupatorium adenophorum . Nepalese J. Agric. 12:135157.Google Scholar
Shirazi, A. M. and Muir, P. S. 1998. In vitro effect of formaldehyde on Douglas fir pollen. Plant Cell Environ. 21:341346.Google Scholar
Skvarla, J. J., Rowley, J. R., Chissoe, W. F., and Folley, P. 2003. The common occurrence of incompletely developed pollen of Eupatorium (Compositae: Eupatorieae). Plant Syst. Evol. 243:111.Google Scholar
Sparvoli, E. 1960. Osservazioni cito-embriologiche in Eupatorium riparium. II. Megasporogenesi e sviluppo del gametofito femminile. Ann. Bot. 26:481504.Google Scholar
Stebbins, G. L. 1950. Variation and evolution in plants. New York Columbia University Press.CrossRefGoogle Scholar
Sullivan, V. I. 1975. Pollen and pollination in the genus Eupatorium (Compositae). Can. J. Bot. 53:582589.Google Scholar
Sullivan, V. I. 1976. Diploidy, polyploidy and agamospermy among species of Eupatorium (Compositae). Can. J. Bot. 54:29072917.Google Scholar
Tripathi, R. S. and Yadav, A. S. 1987. Population dynamics of Eupatorium adenophorum Spreng. and Eupatorium riparium Regel in relation to burning. Weed Res. 27:229236.CrossRefGoogle Scholar
Wan, Z. X., Zhu, J. J., and Qiang, S. 2001. The pathogenic mechanism of toxin of Alternaria alternata (Fr.) Keissler to Eupatorium adenophorum Spreng. J. Plant Res. Environ. 10:4750. [In Chinese with English abstract].Google Scholar
Wartidiningsih, N. and Geneve, R. L. 1994. Seed source and quality influence germination in purple coneflower [Echinacea purpurea (L.) Moench]. Hortscience. 29:14431444.Google Scholar
Young, J. A. and Clements, C. D. 2001. Purple loosestrife (Lythrum salicaria) seed germination. Weed Technol. 15:337342.Google Scholar
Zeng, Q. W., Zhang, D. X., Gao, Z. Z., and Xing, F. W. 2003. Facultative apomixis in an endangered dioecious species, Woonyoungia septentrionalis (Magnoliaceae). Acta Bot. Sin. 45:12701273.Google Scholar
Zhou, S. L., Hong, D. Y., and Pan, K. Y. 1999. Pollination biology of Paeonia jishanensis T. Hong & W. Z. Zhao (Paeoniaceae), with special emphasis on pollen and stigma biology. Bot. J. Linn. Soc. 130:4352.Google Scholar