Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-04T04:02:07.092Z Has data issue: false hasContentIssue false

Phytotoxicity and Uptake of Clopyralid in Honey Mesquite (Prosopis glandulosa) as Affected by Adjuvants and Other Herbicides

Published online by Cambridge University Press:  12 June 2017

Rodney W. Bovey
Affiliation:
Agric. Res. Serv., U.S. Dep. Agric., Range Sci. Dep., Texas A&M Univ., College Station, TX 77843
Hugo Hein Jr.
Affiliation:
Agric. Res. Serv., U.S. Dep. Agric., Range Sci. Dep., Texas A&M Univ., College Station, TX 77843
Robert E. Meyer
Affiliation:
Agric. Res. Serv., U.S. Dep. Agric., Range Sci. Dep., Texas A&M Univ., College Station, TX 77843

Abstract

The addition of surfactant I (trimethylnonylpolyethoxyethanol) or surfactant II (4-isopropenyl-1-methyl cyclohexane) at 0.5% (v/v) to the spray solution or 1:1 mixtures of benazolin [4-chloro-2-oxo-3(2H)-benzothiazole-aceticacid], picloram (4-amino-3,5,6-trichloro-2-pyridinecarboxylic acid), or triclopyr {[(3,5,6-trichioro-2-pyridinyl) oxy] acetic acid} with clopyralid (3,6-dichloro-2-pyridinecarboxylic acid) each at 0.28 kg ae/ha enhanced the phytotoxicity of clopyralid on honey mesquite (Prosopis glandulosa Torr. # PRCJG) compared to clopyralid applied alone. Addition of surfactant I, surfactant II, picloram, or triclopyr to clopyralid enhanced its absorption into leaves by 4 h after treatment and movement into upper-stem phloem by all additives by 1 day after treatment. When combined at equal rates, more clopyralid than picloram was transported into stems.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © 1988 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Bovey, R. W., Hein, H. Jr., and Meyer, R. E. 1983. Absorption and translocation of triclopyr in honey mesquite (Prosopis juliflora var. glandulosa). Weed Sci. 31:807812.Google Scholar
2. Bovey, R. W., Hein, H. Jr., and Meyer, R. E. 1986. Concentration of 2,4,5-T, triclopyr, picloram, and clopyralid in honey mesquite (Prosopis glandulosa) stems. Weed Sci. 34:211217.Google Scholar
3. Bovey, R. W., Hein, H. Jr., Meyer, R. E., and Fred Bouse, L. 1987. Influence of adjuvants on the deposition, absorption, and translocation of clopyralid in honey mesquite (Prosopis glandulosa). Weed Sci. 35:253258.Google Scholar
4. Bovey, R. W. and Meyer, R. E. 1985. Herbicide mixtures for control of honey mesquite (Prosopis glandulosa). Weed Sci. 33:349352.Google Scholar
5. Cotterill, E. G. 1978. Determination of 3,6-dichloropicolinic acid residues in soil by gas chromatography of the butyl ester. Bull. Environ. Contamin. Toxicol. 15:471474.Google Scholar
6. Davis, F. S., Meyer, R. E., Baur, J. R., and Bovey, R. W. 1972. Herbicide concentrations in honey mesquite phloem. Weed Sci. 20:264267.Google Scholar
7. Jacoby, P. W., Meadors, C. H., and Foster, M. A. 1981. Control of honey mesquite (Prosopis juliflora var. glandulosa) with 3,6-dichloropicolinic acid. Weed Sci. 29:376378.Google Scholar
8. Steel, R.G.D. and Torrie, J. H. 1980. Principles and Procedures of Statistics. A Biometrical Approach. McGraw-Hill Book Co., New York. 633 pp.Google Scholar