Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-27T10:41:52.741Z Has data issue: false hasContentIssue false

Oxyfluorfen and Lipid Peroxidation: Protein Damage as a Phytotoxic Consequence

Published online by Cambridge University Press:  12 June 2017

Karl J. Kunert
Affiliation:
Lehrstuhl für Physiologie und Biochemie der Pflanzen, Universität Konstanz, D-775 Konstanz, West Germany
Carmen Homrighausen
Affiliation:
Lehrstuhl für Physiologie und Biochemie der Pflanzen, Universität Konstanz, D-775 Konstanz, West Germany
Herbert Böhme
Affiliation:
Lehrstuhl für Physiologie und Biochemie der Pflanzen, Universität Konstanz, D-775 Konstanz, West Germany
Peter Böger
Affiliation:
Lehrstuhl für Physiologie und Biochemie der Pflanzen, Universität Konstanz, D-775 Konstanz, West Germany

Abstract

Protein damage, as a primary phytotoxic consequence of in vivo lipid peroxidation, induced by the diphenyl ether herbicide oxyfluorfen [2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluoromethyl)benzene] at a concentration of 10 μM, was measured with the green alga Scenedesmus acutus. In the light, water-soluble proteins are destroyed by a herbicide-induced peroxidation process that can be detected by production of fluorescent products and loss of specific amino acid residues of proteins. The water-soluble cytochrome c-553 and the membrane-bound cytochrome f-553, components of the photosynthetic electron transport, were specifically used as sensitive markers for protein damage, measured as decrease of redox reactions of the cytochromes. Under peroxidizing conditions, destruction of the algal cytochrome c is significantly higher than destruction of membrane-bound components, such as cytochrome f and chlorophyll. Protection against protein loss is achieved by the nonbiological antioxidant ethoxyquin (1,2-dihydro-6-ethoxy-2,2,4-trimethylquinoline) or the photosynthesis inhibitor diuron [N′-(3,4-dichlorophenyl)-N,N-dimethylurea].

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © 1985 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Böger, P. 1984. Multiple modes of action of diphenyl ethers. Z. Naturforsch. 39c:468475.Google Scholar
2. Böhme, H. 1976. Photoreactions of cytochrome b6 and cytochrome f in chloroplast photosystem I fragments. Z. Naturforsch. 31c:6877.Google Scholar
3. Böhme, H., Brütsch, S., Weithmann, G., and Böger, P. 1980. Isolation and characterization of soluble cytochrome c-553 and membrane-bound cytochrome f-553 from thylakoids of the green alga Schenedesmus acutus. Biochim. Biophys. Acta 590: 248260.Google Scholar
4. Bohner, H. and Böger, P. 1978. Reciprocal formation of cytochrome c-553 and plastocyanin in Scenedesmus. FEBS Lett. 85:337339.Google Scholar
5. Bohner, H., Böhme, H., and Böger, P. 1980. Reciprocal formation of plastocyanin and cytochrome c-553 and the influence of cupric ions on photosynthetic electron transport. Biochim. Biophys. Acta 592:103112.Google Scholar
6. Desai, I. D. and Tappel, A. L. 1963. Damage to proteins by peroxidized lipids. J. Lipid Res. 4:204207.Google Scholar
7. Dhindsa, R. S. 1982. Inhibition of protein synthesis by products of lipid peroxidation. Phytochemistry 21:309313.Google Scholar
8. Dumelin, E. E. and Tappel, A. L. 1977. Hydrocarbon gases produced during in vitro peroxidation of polyunsaturated fatty acids and decomposition of preformed hydroperoxides. Lipids 12: 894900.Google Scholar
9. Dupont, J., Rustin, P., and Lance, C. 1982. Interaction between mitochondrial cytochromes and linoleic acid hydroperoxide. Plant Physiol. 69:13081314.Google Scholar
10. Elstner, E. F. 1982. Oxygen activation and oxygen toxicity. Annu. Rev. Plant Physiol. 33:7396.Google Scholar
11. Fadayomi, O. and Warren, G. F. 1976. The light requirement for herbicidal activity of diphenyl ethers. Weed Sci. 24:598600.CrossRefGoogle Scholar
12. Gardner, H. W. 1979. Lipid hydroperoxide reactivity with proteins and amino acids: A review. J. Agric. Food Chem. 27:220229.Google Scholar
13. Halliwell, B. 1984. Oxygen-derived species and herbicide action. What's New Plant Physiol. 15:2124.Google Scholar
14. Kunert, K. J., Böhme, H., and Böger, P. 1976. Reactions of plastocyanin and cytochrome 553 with photosystem-I particles of Scenedesmus. Biochim. Biophys. Acta 449:541553.Google Scholar
15. Kunert, K. J. and Böger, P. 1979. Influence of bleaching herbicides on chlorophyll and carotenoids. Z. Naturforsch. 34c:10471051.Google Scholar
16. Kunert, K. J. and Böger, P. 1981. The bleaching effect of the diphenyl ether oxyfluorfen. Weed Sci. 29:169173.Google Scholar
17. Kunert, K. J. and Tappel, A. L. 1983. The effect of vitamin C on in vivo lipid peroxidation in guinea pigs as measured by pentane and ethane production. Lipids 18:271274.Google Scholar
18. Kunert, K. J. 1984. The diphenyl-ether herbicide oxyfluorfen: A potent inducer of lipid peroxidation in higher plants. Z. Naturforsch. 39c:476481.Google Scholar
19. Kunert, K. J. and Böger, P. 1984. The diphenyl ether herbicide oxyfluorfen: Action of antioxidants. J. Agric. Food Chem. 32: 725728.Google Scholar
20. Lambert, R., Sandmann, G., and Böger, P. 1983. Correlation between structure and phytotoxic activities of nitrodiphenyl ethers. Pestic. Biochem. Physiol. 19:309320.Google Scholar
21. Lichtenthaler, H. K., Prenzel, U., Douce, R., and Joyard, J. 1981. Localization of prenylquinones in the envelope of spinach chloroplasts. Biochim. Biophys. Acta 641:99105.Google Scholar
22. Matsunaka, S. 1969. Acceptor of light energy in photoactivation of diphenyl ether herbicides. J. Agric. Food Chem. 17:171175.Google Scholar
23. Orr, G. L. and Hess, F. D. 1982. Mechanism of action of the diphenyl ether herbicide acifluorfen-methyl in excised cucumber (Cucumis sativus L.) cotyledons. Plant Physiol. 69:502507.CrossRefGoogle ScholarPubMed
24. Pryor, W. A. 1976. The role of free radical reactions in biological systems. Pages 149 in Pryor, W. A., ed. Free Radicals in Biology. Vol. I. Academic Press, New York.Google Scholar
25. Roders, M. K., Glende, E. A. Jr., and Recknagel, R. O. 1977. Prelytic damage of red cells in filtrates from peroxidizing microsomes. Science 196:12211222.Google Scholar
26. Roubal, W. T. and Tappel, A. L. 1966. Polymerization of proteins induced by free-radical lipid peroxidation. Arch. Biochem. Biophys. 113:150155.Google Scholar
27. Schaich, K. M. 1980. Free radical initiation in proteins and amino acids by ionizing and ultraviolet radiations and lipid oxidation – Part III: Free radical transfer from oxidizing lipids. CRC Crit. Rev. Food Sci. Nutr. 13:189244.Google Scholar
28. Spackman, O. H., Stein, W. H., and Moore, S. 1958. Automatic recording apparatus for use in the chromatography of amino acids. Anal. Chem. 30:11901206.Google Scholar
29. Tappel, A. L. 1980. Measurement of and protection from in vivo lipid peroxidation. Pages 147 in Pryor, W. A., ed. Free Radicals in Biology Vol. IV. Academic Press, New York.Google Scholar
30. Dillard, C. J. and Tappel, A. L. 1984. Fluorescent damage products of lipid peroxidation. Pages 337341 in Packer, L., ed. Methods in Enzymology. Vol. 105. Academic Press, Orlando.Google Scholar
31. Willis, R. J., Rodgers, M. K., Waller, R. L., Glende, E. A. Jr., and Recknagel, R. O. 1979. Use of vitamin E deficient red cells to detect a dialyzable hemolytic factor produced by peroxidizing rat liver microsomes. Life Sci. 23:10751082.Google Scholar