Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-05T08:00:48.075Z Has data issue: false hasContentIssue false

Molecular Basis of Resistance to Tribenuron in Water Starwort (Myosoton aquaticum) Populations from China

Published online by Cambridge University Press:  20 January 2017

Weitang Liu
Affiliation:
Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Shandong Tai'an 271018, PR China
Yaling Bi
Affiliation:
College of Plant Science, Anhui Science and Technology University, Anhui Fengyang, 233100, PR China
Lingxu Li
Affiliation:
College of Chemistry and Pharmacy Science, Qingdao Agricultural University, Shandong Qingdao 266109, PR China
Guohui Yuan
Affiliation:
Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Shandong Tai'an 271018, PR China
Jinxin Wang*
Affiliation:
Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Shandong Tai'an 271018, PR China
*
Corresponding author's E-mail: [email protected]

Abstract

Populations of water starwort, a winter annual or biennial weed in the pink family (Caryophyllaceae), can no longer be controlled by tribenuron following successive use of this herbicide over several years. Whole-plant bioassays have established that the resistant water starwort populations JS17, JS08, JS16, and JS07 showed high-level (from 203-fold to 565-fold) resistance to tribenuron. In vitro acetolactate synthase (ALS) assays revealed that resistance was due to reduced sensitivity of the ALS enzyme to tribenuron. The half-maximal inhibitory concentration (I50) values for JS17, JS08, JS16, and JS07 were 72, 71, 70, and 76 times greater, respectively, than were those of the susceptible population JS24. This altered ALS sensitivity in the resistant populations was due to a mutation in the ALS gene resulting in a Pro197 to Ser substitution (JS17, JS08, and JS16) and a Pro197 to Leu substitution (JS07). This study established the first documented case, to our knowledge, of evolved tribenuron resistance in water starwort and concluded that the molecular basis of resistance is due, at least in part, to a target-site modification at Pro197 in the ALS gene.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Chaleff, R. S. and Mauvais, C. J. 1984. Acetolactate synthase is the site of action of two sulfonylurea herbicides in higher plants. Science 224:14431445.Google Scholar
Chen, C. Q. and Yu, X. Y. 1992. Study on the biological character of Malachium aquaticum and its control. Acta. Phytophysiol. Sin. 19(1–4):1216. [In Chinese]Google Scholar
Cui, H. L. and Li, X. J. 2012. Acetolactate synthase proline (197) mutations confer tribenuron-methyl resistance in Capsella bursa-pastoris populations from China. Pestic. Biochem. Physiol. 102:229232.Google Scholar
Cui, H. L., Zhang, C. X., and Wei, S. H. 2011. Acetolactate synthase gene proline (197) mutations confer tribenuron-methyl resistance in flixweed (Descurainia sophia) populations from China. Weed Sci. 59:376379.Google Scholar
Cui, H. L., Zhang, C. X., Zhang, H. J., Liu, X., Wang, G. Q., Huang, H. J., and Wei, S. H. 2008. Confirmation of flixweed (Descurainia sophia) resistance to tribenuron in China. Weed Sci. 56:775779.Google Scholar
Delye, C., Pernin, F., and Scarabel, L. 2011. Evolution and diversity of the mechanisms endowing resistance to herbicides inhibiting acetolactate–synthase (ALS) in corn poppy (Papaver rhoeas L.). Plant Sci. 180:333342.Google Scholar
Durner, J., Gailus, V., and Boger, P. 1990. New aspects on inhibition of plant acetolactate synthase by chlorsulfuron and imazaquin. Plant Physiol. 95:11441149.CrossRefGoogle Scholar
Gerwick, B. C., Subramanian, M. V., and Loney-Gallant, V. I. 1990. Mechanism of action of the 1,2,4-triazolo[1,5-a] pyrimidines. Pest Manag. Sci. 29:357364.Google Scholar
Han, H. P., Yu, Q., Purba, E., Li, M., Walsh, M., Friesen, S., and Powles, S. B. 2012a. A novel amino acid substitution Ala-122-Tyrin ALS confers high-level and broad resistance across ALS-inhibiting herbicides. Pest Manag. Sci. 68:11641170.Google Scholar
Han, X. J., Dong, Y., Sun, X. N., Li, X. F., and Zheng, M. Q. 2012b. Molecular basis of resistance to tribenuron-methyl in Descurainia Sophia (L.) populations from China. Pestic. Biochem. Physiol. 104:7781.Google Scholar
Heap, I. 2012. International Survey of Herbicide Resistant Weeds. http://www.weedscience.org/summary/SOASummary.aspx. Accessed April 02, 2013.Google Scholar
[ICAMA] Institute for the Control of Agrochemicals, Ministry of Agriculture. 1988. The Bulletins of the Pesticide Registration in China Beijing, China China Agricultural Press. 166 p. [In Chinese]Google Scholar
Jin, T., Liu, J. L., Huan, Z. B., Wu, C. X., Bi, Y. L., and Wang, J. X. 2011. Molecular basis for resistance to tribenuron in shepherd's purse (Capsella bursa-pastoris (L.) Medik.). Pestic. Biochem. Physiol. 100:160164.Google Scholar
Kaloumenos, N. S., Adamouli, V. N., Dordas, C. A., and Eleftherohorinos, I. G. 2011. Corn poppy (Papaver rhoeas) cross-resistance to ALS-inhibiting herbicides. Pest Manag. Sci. 67:574585.Google Scholar
Kaloumenos, N. S., Dordas, C. A., Diamantidis, G. C., and Eleftherohorinos, I. G. 2009. Multiple Pro197 substitutions in the acetolactate synthase of corn poppy (Papaver rhoeas) confer resistance to tribenuron. Weed Sci. 57:362368.Google Scholar
Kudsk, P., Mathiassen, S. K., and Cotterman, J. C. 1995. Sulfonylurea resistance in Stellaria media [L.] Vill. Weed Res. 35:1924.CrossRefGoogle Scholar
Lamego, F. P., Charlson, D., Delatorre, C. A., Burgos, N. R., and Vidal, R. A. 2009. Molecular basis of resistance to ALS-inhibitor herbicides in greater beggarticks. Weed Sci. 57:474481.CrossRefGoogle Scholar
Manley, B. S., Hatzios, K. H., and Wilson, H. P. 1999. Absorption, translocation and metabolism of chlorimuron and nicosulfuron in imidazolinone-resistant and susceptible smooth pigweed (Amaranthus hybridus). Weed Technol. 13:759–64.CrossRefGoogle Scholar
Marshall, R., Hull, R., and Moss, S. R. 2010. Target site resistance to ALS inhibiting herbicides in Papaver rhoeas and Stellaria media biotypes from the UK. Weed Res. 50:621630.CrossRefGoogle Scholar
Massa, D., Krenz, B., and Gerhards, R. 2011. Target-site resistance to ALS-inhibiting herbicides in Apera spicaventi populations is conferred by documented and previously unknown mutations. Weed Res. 51:294303.Google Scholar
McNaughton, K. E., Letarte, J., Lee, E. A., and Tardif, F. J. 2005. Mutations in ALS confer herbicide resistance in redroot pigweed (Amaranthus retroflexus) and Powell amaranth (Amaranthus powellii). Weed Sci. 53:1722.Google Scholar
Moshe, S. and Rubin, B. 2003. Molecular basis for multiple resistance to acetolactate synthase-inhibiting herbicides and atrazine in Amaranthus blitoides (prostrate pigweed). Planta (Berl.) 216:10221027.Google Scholar
Powles, S. B. and Yu, Q. 2010. Evolution in action: plants resistant to herbicides. Ann. Rev. Plant Biol. 61:317347.CrossRefGoogle ScholarPubMed
Preston, C. 2003. Inheritance and linkage of metabolism-based herbicide cross-resistance in rigid ryegrass(Lolium rigidum). Weed Sci. 51:412.Google Scholar
Preston, C. 2004. Herbicide resistance in weeds endowed by enhanced detoxification: complication for management. Weed Sci. 52:448–53.Google Scholar
Rubin, B. 1996. Herbicide-resistant weeds—the inevitable phenomenon: mechanisms, distribution and significance. Z. Pflanzenkr. Pflanzenschutz 15:1732.Google Scholar
Santel, H. J., Bowden, B. A., Sorensen, V. M., Mueller, K. H., and Reynolds, J. 1999. Flucarbazone-sodium: a new herbicide for grass control in wheat. Weed Sci. Soc. Am. 39:7. [Abstract]Google Scholar
Seefeldt, S. S., Jensen, J. E., and Fuerst, E. P. 1995. Log-logistic analysis of herbicide dose–response relationships. Weed Technol. 9:218227.CrossRefGoogle Scholar
Shaner, D. L. 1999. Resistance to acetolactate synthase (ALS) inhibitors in the United States: history, occurrence, detection and management. Weed Sci. 44:405411.Google Scholar
Shaner, D. L., Anderson, P. C., and Stidham, M. 1984. Imidazolinones: potential inhibitors of acetohydroxyacid synthase. Plant Physiol. 76:545546.Google Scholar
Sibony, M., Michel, A., Hass, H. U., Rubin, B., and Hurle, K. 2001. Sulfometuron-resistant Amaranthus retroflexus: cross-resistance and molecular basis for resistance to acetolactate synthase-inhibiting herbicides. Weed Res. 41:509522.Google Scholar
Stidham, M. A. 1991. Herbicides that inhibit acetohydroxyacid synthase. Weed Sci. 39:428434.CrossRefGoogle Scholar
Sun, J. and Wang, J. X. 2011. Study on mutations in ALS for resistance to tribenuron-methyl in Galium aparine L. Agric. Sci. China 10:8691.Google Scholar
Tardif, F. J. and Powles, S. B. 1999. Effect of malathion on resistance to soil-applied herbicides in a population of rigid ryegrass (Lolium rigidum). Weed Sci. 47:258–61.Google Scholar
Tranel, P. J. and Wright, T. R. 2002. Resistance of weeds to ALS-inhibiting herbicides: what have we learned? Weed Sci. 50:700712.Google Scholar
Tranel, P. J., Wright, T. R., and Heap, I. M. 2012. Muations in herbicide-resistant weeds to ALS inhibitors Online. http://www.weedscience.com. Accessed April 02, 2013.Google Scholar
Umbarger, H. E. 1978. Amino acid biosynthesis and its regulation. Ann. Rev. Biochem. 47:533606.CrossRefGoogle ScholarPubMed
Warwick, S. I., Xu, R., Sauder, C., and Beckie, H. J. 2008. Acetolactate synthase target-site mutations and single nucleotide polymorphism genotyping in ALS-resistant kochia (Kochia scoparia). Weed Sci. 56:797806.Google Scholar
Yu, Q., Han, H. P., Vila-Aiub, M. M., and Polwes, S. B. 2010. AHAS herbicide resistance endowing mutations: effect on AHAS functionality and plant growth. J. Exp. Bot. 61:39253934.CrossRefGoogle ScholarPubMed
Yu, Q., Abdallah, I., Han, H. P., Owen, M., and Powles, S. B. 2009. Distinct non-target site mechanisms endow resistance to glyphosate, ACCase and ALS-inhibiting herbicides in multiple herbicide-resistant Lolium rigidum . Planta (Berl.) 230:713723.Google Scholar
Yu, Q., Nelson, J., Zheng, M. Q., Jackson, M., and Polwes, S. B. 2007. Molecular characterization of resistance to AHAS-inhibiting herbicides in Hordeum leporinum biotypes. Pest Manag. Sci. 63:918928.CrossRefGoogle Scholar
Yu, Q., Frisesen, L.S.S., Zhang, X. Q., and Powles, S. B. 2004. Tolerance to acetolactate synthase and acetyl-coenzyme A carboxylase inhibiting herbicides in Vulpia bromoides is conferred by two co-existing resistance mechanisms. Pestic. Biochem. Physiol. 78:2130.Google Scholar
Zhang, Z. P. 2003. Development of chemical weed control and integrated weed management in China. Weed Biol. Manag. 3:197203.Google Scholar