Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T03:30:59.006Z Has data issue: false hasContentIssue false

Microchemical Components and Antioxidant Activity of Different Morphological Parts of Thai Wild Purslane (Portulaca oleracea)

Published online by Cambridge University Press:  20 January 2017

Sirithon Siriamornpun*
Affiliation:
Department of Food Technology and Nutrition, Mahasarakham University, Nakorn-sawan Road, Muang, Mahasarakham 44000, Thailand
Maitree Suttajit
Affiliation:
Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50000, Thailand
*
Corresponding author's E-mail: [email protected]

Abstract

Purslane weed has long been used for animal feed in Thailand but has been underutilized, and no published data exist on the chemical and nutritional qualities of Thai wild purslane. In this study, we aimed to determine the microchemical components of purslane stem, leaf, and flower, including the phenolic acid, flavonoid, ascorbic acid, β-carotene, and fatty acid content. The water extract of the flower fraction contained the highest total phenolic acid content and had the highest O2-scavenging activities, whereas leaf contained the highest amount of total flavonoids and ascorbic acid. The β-carotene content was not significantly different in leaf and flower fractions but was significantly greater than that in stem (P < 0.05). The predominant phenolic acid was chlorogenic acid for all fractions. Rutin was the major flavonoid found in leaf, and myricetin was highest in flower and stem. Alpha linolenic acid (18:3n-3) content ranged from 16% (149 mg per 100-g sample) of total fatty acid in stem to 50% (523 mg per 100-g sample) in leaf. We suggest that Thai wild purslane could be considered a nutritional source for animal feed or an excellent vegetable in the human diet.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abu Bakar, M. F., Mohamed, M., Rahmat, A., and Fry, J. 2009. Phytochemicals and antioxidant activity of different parts of bambangan (Mangifera pajang) and tarap (Artocarpus odoratissimus). Food Chem. 113:479483.Google Scholar
Abushita, A. A., Hebshi, E. A., Daood, H. G., and Biacs, P. A. 1997. Determination of antioxidant vitamins in tomatoes. Food Chem. 60:207212.Google Scholar
[AOAC] Association of Official Analytical Chemists 1995. Official Methods of Analysis. 16th ed, Volume 4. Arlington, VA: Association of Official Analytical Chemists. 45.Google Scholar
Braca, A., Tommasi, N. D., Bari, L. D., Pizza, C., Politi, M., and Morelli, I. 2001. Antioxidant principles from Bauhinia terapotensis . J Nat Prod. 64:892895.Google Scholar
Cai, Y., Luo, Q., Sun, M., and Corke, H. 2004. Antioxidant activity and phenolic of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 74:21572184.Google Scholar
Chan, E. W. C., Lim, Y. Y., Wong, S. K., Lim, K. K., Tan, S. P., Lianto, F. S., and Yong, M. Y. 2009. Effects of different drying methods on the antioxidant properties of leaves and tea of ginger species. Food Chem. 113:166172.Google Scholar
Chen, Y. T., Li, X. J., Zao, B. L., Zheng, R. L., and Xin, W. J. 1989. ESR study of the scavenging effect of natural products of rutin etc superoxide and hydroxyl radical. Acta Biophys. Sin. 5:235240.Google Scholar
Dasgupta, N. and De, B. 2004. Antioxidant activity of Piper betle L. leaf extract in vitro. Food Chem. 88:219224.Google Scholar
de Lorgeril, M. and Salen, P. 2004. Alphalenoleic acid and coronary heart disease. Nutr. Metab. Cardiovasc. Dis. 14:162169.Google Scholar
Dragovic-Uzelac, V., Pospišil, J., Levaj, B., and Delonga, K. 2005. The study of phenolic profiles of raw apricots and apples and their purees by HPLC for the evaluation of apricot nectars and jams authenticity. Food Chem. 91:373383.Google Scholar
Folch, J., Lees, M., and Stanley, G. H. S. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226:497509.Google Scholar
Gulluce, M., Sahin, F., Sokmen, M., Ozer, H., Daferera, D., Sokmen, A., Polissiou, M., Adiguzel, A., and Ozkan, H. 2007. Antimicrobial and antioxidant properties of the essential oils and methanol extract from Mentha longifolia L. ssp. longifolia . Food Chem. 103:14491456.Google Scholar
Guo, C., Yang, J., Wei, J., Li, Y., Xu, J., and Jiang, Y. 2003. Antioxidant activities of peel, pulp and seed fractions of common flowers as determined by FRAP assay. Nutr. Res. 23:17191726.Google Scholar
Han, J., Ye, M., Xu, M., Sun, J., Wang, B., and Guo, D. 2007. Characterization of flavonoids in the traditional Chinese herbal medicine-Huangqin by liquid chromatography coupled with electrospray ionization mass spectrometry. J. Chromatogr. B. 848:355362.Google Scholar
Katalinic, V., Milos, M., Modun, D., Music, I., and Boban, M. 2004. Antioxidant effectiveness of selected wines in comparison with (+) catechin. Food Chem. 86:593600.Google Scholar
Kaur, C. and Kapoor, H. C. 2001. Antioxidants in flowers and vegetables—the millennium's health. Int. J. Food Sci. Tech. 36:703725.Google Scholar
Kubola, J. and Siriamornpun, S. 2008. Phenolic contents and antioxidant activities of purslane (Momordica charantia L.) leaf, stem and fruit fraction extracts in vitro. Food Chem. 110:881890.Google Scholar
Li, B. B., Smith, B., and Hossain, Md M. 2006. Extraction of phenolics from citrus peels: I. solvent extraction method. Sep. Purif. Technol. 48:182188.Google Scholar
Li, D., Ng, A., Mann, N., and Sinclair, A. J. 1998. Meat fat can make a significant contribution to dietary arachidonic acid. Lipids. 33:437440.Google Scholar
Liu, L., Howe, P., Zhou, Y., Xu, Z., Hocart, C., and Zhang, R. 2000. Fatty acids and β-carotene in Australian purslane (Portulaca oleracea) varieties. J. Chromatogr. A. 893:207213.Google Scholar
Lopez-Velez, M., Martinez-Martinez, F., and Del Valle-Ribes, C. 2003. The study of phenolic compounds as natural antioxidants in wine. Critical Reviews Food Science and Nutrition. 43:233244.Google Scholar
Manach, C., Scalbert, A., Morand, C., Rémésy, C., and Jiménez, L. 2004. Polyphenols: food sources and bioavailability. Am. J. Clin. Nutr. 79:727747.Google Scholar
Oliveira, I., Valentao, P., Lopes, R., Andrade, P., Bento, A., and Pereira, J. A. 2009. Phytochemical characterization and radical scavenging activity of Portulaca oleraceae L. leaves and stems. Microchem J. 92:129134.Google Scholar
Ortega, H., Coperías, J. L., Castilla, P., Gómez-Coronado, D., and Lasunción, M. A. 2004. Liquid chromatographic method for the simultaneous determination of different lipid-soluble antioxidants in human plasma and low-density lipoproteins. J. Chromatogr. B. 803:249255.Google Scholar
Othman, A., Ismail, A., Ghani, N. A., and Adenan, I. 2007. Antioxidant capacity and phenolic content of cocoa beans. Food Chem. 100:15231530.Google Scholar
Pereira, J. A., Oliveira, I., Sousa, A., et al. 2007. Walnut (Juglans regia L.) leaves: phenolic compounds, antibacterial activity and antioxidant potential of different cultivars. Food Chem. Toxicol. 45:22872295.Google Scholar
Pulido, R., Bravo, L., and Saura-Calixto, F. 2000. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J. Agric. Food Chem. 48:33963402.Google Scholar
Rashed, A. N., Afifi, F. U., and Disi, A. M. 2003. Simple evaluation of the wound healing activity of a crude extract of Portulaca olecracea L. (growing in Jordan) in Mus musculus JVI-1. J. Ethnopharmacol. 88:131136.Google Scholar
Renaud, S. 1990. Linoleic acid, platelet aggregation and myocardial infarction. Atherosclerosis. 80:255256.Google Scholar
Renaud, S. and Nordoy, A. 1983. Small is beautiful: alpha-linolenic acid and eicosapentanoic acids in man. Lancet I. 1169.Google Scholar
Rice-Evans, C. A., Miller, N. J., and Paganga, G. 1996. Structure–antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 20:933956.Google Scholar
Rific, V. A. and Khanchadurian, A. K. 1993. Dietary supplementation with vitamin C and E inhibits in vitro oxidation of lipoproteins. J. Am. Coll. Nutr. 12:631637.Google Scholar
Rudnicki, M., Oliveira, M. R., Pereira, T. V., Reginatto, F. H., Dal-Pizzol, F., and Moreira, J. C. F. 2007. Antioxidant and antiglycation properties of Passiflora alata and Passiflora edulis extracts. Food Chem. 100:719724.Google Scholar
Sapina, M., Cuccioloni, M., Sparapani, L., Accirarri, S., Eleuteri, A. M., Fioretti, E., and Angeletti, M. 2008. Comparative evaluation of flavonoid content in assessing quality of wild and cultivated vegetables for human consumption. J. Sci. Food Agric. 88:294304.Google Scholar
Senevirathne, M., Kim, S., Siriwardhana, N., Ha, J., Lee, K., and Jeon, Y. 2006. Antioxidant potential of Ecklonia cava on reactive oxygen species scavenging metal chelating, reducing power and lipid peroxidation inhibition. Food Sci. Technol. Int. 12:2738.Google Scholar
Silva, B. M., Andrade, P. B., Valentaõ, P., Ferreres, F., Seabra, R. M., and Ferreira, M. A. 2004. Quince (Cydonia oblonga Miller) flower (pulp, peel, and seed) and jam: antioxidant activity. J Agric. Food Chem. 52:47054712.Google Scholar
Simopoulos, A. P., Norman, H. A., and Gillapsy, J. E. 1995. Plants in human nutrition. Pages 4774. in Simopoulos, A. P. ed. World Review of Nutrition and Dietetics. Basel: Karger.Google Scholar
Simopoulos, A. P., Norman, H. A., Gillapsy, J. E., and Duke, J. A. 1992. Common purslane: a source of omega-3 fatty acids and antioxidants. J. Am. Coll. Nutr. 11:374382.Google Scholar
Vinson, J. A., Xuehui, S., Ligia, Z., and Bose, P. 2001. Phenol antioxidant quantity and quality in foods: fruits. J. Agric. Food Chem. 49:53155321.Google Scholar
Xu, X., Yu, L., and Chen, G. 2006. Determination of flavonoids in Portulaca oleracea L. by capillary electrophoresis with electrochemical detection. J. Pharmaceut. Biomed. Anal. 41:493499.Google Scholar
Yang, L. F., Siriamornpun, S., and Li, D. 2006. Polyunsaturated fatty acid content of edible insects in Thailand. J. Food Lipids. 13:277285.Google Scholar
Zhou, K. and Yu, L. 2006. Total phenolic contents and antioxidant properties of commonly consumed vegetables grown in Colorado. LWT Food Sci. Technol. 39:11551162.Google Scholar