Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-18T14:20:41.656Z Has data issue: false hasContentIssue false

Metabolic Detoxification of Phenmedipham in Leaf Tissue of Tolerant and Susceptible Species

Published online by Cambridge University Press:  12 June 2017

H. Maelor Davies
Affiliation:
Calgene, Inc., 1920 Fifth St., Davis, CA 95616
Alexis Merydith
Affiliation:
Calgene, Inc., 1920 Fifth St., Davis, CA 95616
Liane Mende-Mueller
Affiliation:
Calgene, Inc., 1920 Fifth St., Davis, CA 95616
Alpo Aapola
Affiliation:
Res. Sci., Kemira Oy, Espoo Res. Ctr., P.O. Box 44, SF-02271, Espoo, Finland

Abstract

Phenmedipham metabolism in leaf tissue of sugarbeet (tolerant) and rapeseed (sensitive) was compared. Sugarbeet leaf discs metabolized phenmedipham much more rapidly than rapeseed leaf discs, forming two metabolites of relatively low polarity. The less polar of these (metabolite 21) was a precursor to the other (metabolite 11), and its properties indicate derivation from phenmedipham by a single hydroxylation and monoglycosylation. Synthetic N-hydroxyphenmedipham was converted by both species into a compound that cochromatographs with metabolite 21. Purified metabolite 21 was much less inhibitory to light-driven oxygen evolution by isolated thylakoids of both species than was phenmedipham. Hydroxylation/glycosylation without prior carbamate hydrolysis appears to be a major factor in the tolerance of sugarbeet to phenmedipham.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © 1990 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Börner, H. 1979. Causes of the selective action of the photosynthetic inhibitors phenmedipham and bentazon. Z. Naturforsch. 34:926930.CrossRefGoogle Scholar
2. Burt, M. E. and Corbin, F. T. 1978. Uptake, translocation, and metabolism of propham by wheat (Triticum aestivum), sugarbeet (Beta vulgaris), and alfalfa (Medicago sativa). Weed Sci. 26:296303.CrossRefGoogle Scholar
3. Celorio, J. I. 1983. Metabolismus von phenmedipham in der Zuckerrübe (Beta vulgaris L.). PhD. Thesis, Univ. Berlin. 147 pp.Google Scholar
4. Cutler, A. J., Sternberg, M., and Conn, E. E. 1985. Properties of a microsomal enzyme system from Linum usitatissimum (Linen Flax) which oxidizes valine to acetone cyanohydrin and isoleucine to 2-methylbutanone cyanohydrin. Arch. Biochem. Biophys. 238:272279.CrossRefGoogle ScholarPubMed
5. Diaz, M. A., Chueca, A., and Gorgé., J. L. 1980. Effect of some herbicides on CO2 fixation, intermediates pattern, and RuDP-carboxylase and FDPase activities of spinach chloroplasts. Pestic. Biochem. Physiol. 13:105111.CrossRefGoogle Scholar
6. Hendrick, L. W., Meggitt, W. F., and Penner, D. 1974. Basis for selectivity of phenmedipham and desmedipham on wild mustard, redroot pigweed, and sugarbeet. Weed Sci. 22:179184.CrossRefGoogle Scholar
7. Hlavica, P. 1982. Biological oxidation of nitrogen in organic compounds and disposition of N-oxidized products. Crit. Rev. Biochem. 12:39101.CrossRefGoogle ScholarPubMed
8. James, C. S. and Prendeville, G. N. 1969. Metabolism of chlorpropham (isopropyl m-chlorocarbanilate) in various plant species. J. Agric. Food Chem. 17:12571260.CrossRefGoogle Scholar
9. Jensen, R. G. and Bassham, J. A. 1966. Photosynthesis by isolated chloroplasts. Proc. Nat Acad. Sci. 56:10951101.CrossRefGoogle ScholarPubMed
10. Kassebeer, V. H. 1971. Aufnahmegeschwindigkeit, metabolismus und verlagerung von phenmedipham bei vershieden empfindlichen pflanzen. Z. Pflanzenkr. Pflanzenschutz 78:158174.Google Scholar
11. Knowles, C. O. and Benezet, H. J. 1981. Microbial degradation of the carbamate pesticides desmedipham, phenmedipham, promecarb, and propamocarb. Bull. Environ. Contam. Toxicol. 27:529533.CrossRefGoogle ScholarPubMed
12. Macherel, D., Ravenel, P., and Tissut, M. 1982. Effects of herbicidal carbamates on mitochondria and chloroplasts. Pestic. Biochem. Physiol. 18:280288.CrossRefGoogle Scholar
13. Merbach, W. and Schilling, G. 1977. Influence of several herbicidal substances on photosynthesis and its individual steps in Sinapis alba L. Biochem. Physiol. Pflanzen 171:171186.CrossRefGoogle Scholar
14. Merbach, W. and Schilling, G. 1977. Reasons of insensitivity of Beta vulgaris L. against Pyrazon, Phenmedipham, and Benzthiazuron. Biochem. Physiol. Pflanz. 171:187199.CrossRefGoogle Scholar
15. Sobotka, F. E. and Stelzig, D. A. 1973. Lactone inhibition of the β-glucosidase contaminant of an enzymatic reagent used for glucose assays. Anal. Biochem. 54:612615.CrossRefGoogle Scholar
16. Sonawane, B. R. and Knowles, C. O. 1972. Comparative metabolism of two carbanilate herbicides (EO–475 and phenmedipham) in rats. Pestic. Biochem. Physiol. 1:472482.CrossRefGoogle Scholar
17. Still, G. G. and Mansager, E. R. 1973. Metabolism of isopropyl carbanilate by soybean plants. Pestic. Biochem. Physiol. 3:289299.CrossRefGoogle Scholar
18. Tischer, W. and Strotmann, H. 1977. Relationship between inhibitor binding by chloroplasts and inhibition of photosynthetic electron transport. Biochim. Biophys. Acta 460:113125.CrossRefGoogle ScholarPubMed
19. Trebst, A. and Pistorius, E. 1968. Die Hemmung photosynthetischer reaktionen durch herbicide des biscarbamat-typs. Z. Naturforsch. 23:342348.CrossRefGoogle Scholar
20. Vernon, L. P. 1960. Spectrophotometric determination of chlorophylls and phaeophytins in plant extracts. Anal. Chem. 32:11441150.CrossRefGoogle Scholar
21. Zurgiyah, A. A., Jordan, L. S., and Jolliffe, V. A. 1976. Metabolism of isopropyl carbanilate (propham) in alfalfa grown in nutrient solution. Pestic. Biochem. Physiol. 6:3545.CrossRefGoogle Scholar