Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T20:08:03.992Z Has data issue: false hasContentIssue false

Japanese Foxtail (Alopecurus japonicus) Resistance to Fenoxaprop and Pinoxaden in China

Published online by Cambridge University Press:  20 January 2017

Ibrahim A. Mohamed
Affiliation:
State Key Lab of Plant Physiology and Biochemistry, Centre of Crop Chemical Control, Department of Agronomy, China Agricultural University, Beijing 100193, P.R. China
Runzhi Li
Affiliation:
State Key Lab of Plant Physiology and Biochemistry, Centre of Crop Chemical Control, Department of Agronomy, China Agricultural University, Beijing 100193, P.R. China
Zhenguo You
Affiliation:
Development Department, Bayer CropScience China, Beijing, 100020, P.R. China
Zhaohu Li*
Affiliation:
State Key Lab of Plant Physiology and Biochemistry, Centre of Crop Chemical Control, Department of Agronomy, China Agricultural University, Beijing 100193, P.R. China
*
Corresponding author's E-mail: [email protected]

Abstract

Japanese foxtail is one of the most common and competitive annual grass weeds of wheat in China. Whole-plant dose-response experiments were conducted with fenoxaprop and pinoxaden to confirm and characterize resistant and susceptible Japanese foxtail populations and to elucidate the basis of resistance to these herbicides. The resistant Japanese foxtail population was 49-fold resistant to fenoxaprop and 16-fold (cross) resistant to pinoxaden relative to the susceptible population, which was susceptible to both fenoxaprop and pinoxaden herbicides. Molecular analysis of resistance confirmed that the Ile1781 to Leu mutation in the resistant population conferred resistance to both fenoxaprop and pinoxaden. This is the first report of cross resistance of Japanese foxtail to pinoxaden in the world and of a target site mutation that corresponded to resistance to both fenoxaprop and pinoxaden in Japanese foxtail. Prior selection pressure from fenoxaprop could result in evolution of resistance to fenoxaprop and cross resistance to pinoxaden in Japanese foxtail population.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Current address: Department of Agronomy, Tianjin Agricultural University, Tianjin, 30384, China.

References

Literature Cited

Balgheim, N. 2009. Investigations on herbicide resistant grass weeds. . Stuttgart, Germany University of Hohenheim. 80 p.Google Scholar
Beckie, H. J., Heap, I. M., Smeda, R. J., and Hall, L. M. 2000. Screening for herbicide resistance in weeds. Weed Technol. 14:428445.Google Scholar
Burke, I. C., Thomas, W. E., Burton, J. D., and Wilcut, J. W. 2006. A seedling assay to screen aryloxyphenoxypropionic acid and cyclohexanedione resistance in johnsongrass (Sorghum halepense). Weed Technol. 20:950955.Google Scholar
Christoffers, M., Berg, M. L., and Messersmith, C. G. 2002. An isoleucine to Leucine mutation in acetyl-CoA carboxylase confers herbicide resistance in wild oat. Genome. 45:10491056.Google Scholar
Cocker, K. M., Coleman, J. O. D., Blair, A. M., Clarke, J. H., and Moss, S. R. 2000. Biochemical mechanisms of cross-resistance to aryloxyphenoxypropionate and cyclohexanedione herbicides in populations of Avena spp. Weed Res. 40:323334.Google Scholar
Collavo, A., Panozzo, S., Lucchesi, G., Scarabel, L., and Sattin, M. 2011. Characterisation and management of Phalaris paradoxa resistant to ACCase-inhibitors. Crop Prot. 30:293299.Google Scholar
Cummins, I., Moss, S., Cole, D. J., and Edwards, R. 1997. Glutathione transferases in herbicide-resistant and herbicide-susceptible black-grass (Alopecurus myosuroides). Pestic. Sci. 51:244250.Google Scholar
Délye, C. 2005. Weed resistance to acetyl-coenzyme A carboxylase-inhibitors: an update. Weed Sci. 53:728746.Google Scholar
Délye, C., Calmés, É., and Matéjicek, A. 2002a. SNP markers for blackgrass (Alopecurus myosuroides Huds.) genotypes resistant to acetyl CoAcarboxylase inhibiting herbicides. Theor. Appl. Genet. 104:11141120.CrossRefGoogle ScholarPubMed
Délye, C., Matéjicek, A., and Gasquez, J. 2002b. PCR-based detection of resistance to acetyl-CoA carboxylase-inhibiting herbicides in blackgrass (Alopecurus myosuroides Huds) and ryegrass (Lolium rigidum Gaud). Pest Manag. Sci. 58:474478.Google Scholar
Délye, C., Matéjicek, A., and Michel, S. 2008. Cross-resistance pattern to ACCase-inhibiting herbicide conferred by mutant ACCase isoforms in Alopecurus myosuroides Huds. (black-grass) re-examined at the recommended herbicide field rate. Pest Manag. Sci. 64:11791186.Google Scholar
Délye, C., Pernin, F., and Michel, S. 2011. ‘Universal’ PCR assays detecting mutations in acetyl-coenzyme A carboxylase or acetolactate synthase that endow herbicide resistance in grass weeds. Weed Res. 51:353362.Google Scholar
Délye, C., Wang, T., and Darmency, H. 2002c. An isoleucine–leucine substitution in chloroplastic acetyl-Co A carboxylase from green foxtail (Setaria viridis L. Beauv.) is responsible for resistance to the cyclohexanedione herbicide sethoxydim. Planta. 214:421427.Google Scholar
Doyle, J. J. and Doyle, J. L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19:1115.Google Scholar
Ellis, A. T., Steckel, L. E., Main, C. L., de Melo, M. S. C., West, D. R., and Mueller, T. C. 2010. A survey for diclofop-methyl resistance in Italian ryegrass from Tennessee and how to manage resistance in wheat. Weed Technol. 24:303309.Google Scholar
Harwood, J. L. 1988. Fatty acid metabolism. Annu. Rev. Plant Physiol. 39:101138.Google Scholar
Heap, I. M. 2011. International Survey of Herbicide Resistant Weeds. www.weedscience.org. Accessed: April 2011.Google Scholar
Hidayat, I. and Preston, C. 1997. Enhanced metabolism of fluazifop acid in a biotype of Digitaria sanguinalis resistant to the herbicide fluazifop-p-butyl. Pestic. Biochem. Physiol. 57:137146.Google Scholar
Huang, S. X. 2004. Studies on biology and resistance of Alopecurus aequalis Sobol. to acetyl-coenzyme A carboxylase inhibitors. . Nanjing, China Nanjing Agric. Univ. 74 p. [In Chinese].Google Scholar
Incledon, B. J. and Hall, J. C. 1997. Acetyl-coenzyme A carboxylase: quaternary structure and inhibition by graminicidal herbicides. Pestic. Biochem. Physiol. 57:255271.CrossRefGoogle Scholar
Kaundun, S. S. 2010. An aspartate to glycine change in the carboxyl transferase domain of acetyl CoA carboxylase and non-target-site mechanism(s) confer resistance to ACCase inhibitor herbicides in a Lolium multiflorum population. Pest Manag. Sci. 66:12491256.Google Scholar
Kuk, Y., Burgos, N. R., and Scott, R. C. 2008. Resistance profile of diclofop-resistant Italian ryegrass (Lolium multiflorum) to ACCase- and ALS-inhibiting herbicides in Arkansas, USA. Weed Sci. 56:614623.Google Scholar
Letouzé, A. and Gasquez, J. 2003. Enhanced activity of several herbicide-degrading enzymes: a suggested mechanism responsible for multiple resistance in blackgrass (Alopecurus myosurides Hud.). Agronomie. 23:601608.Google Scholar
Li, R. 2007. Studies on herbicide-resistance and genetic diversity of wild oat Avena fatua L. populations in China. Ph.D. dissertation. Beijing Beijing Agricultural University. 53 p. [In Chinese].Google Scholar
Li, R., Wang, S., Duan, L., Li, Z., Christoffers, M. J., and Mengistu, L. 2007. Genetic diversity of wild oat (Avena fatua) populations from China and the United States. Weed Sci. 55:95101.Google Scholar
Liu, W., Harrison, D. K., Chalupska, D., Gornicki, P., O'Donnell, C. C., Adkins, S. W., Haselkorn, R., and Williams, R. R. 2007. Single-site mutations in the carboxyltransferase domain of plastid acetyl-CoA carboxylase confer resistance to grass-specific herbicides. Proc. Natl. Acad. Sci. USA. 104:36273632.Google Scholar
Maneechote, C., Samanwong, S., Zhang, X., and Powles, S. B. 2005. Resistance to ACCase-inhibiting herbicides in sprangletop (Leptochloa chinensis). Weed Sci. 53:290295.Google Scholar
Nikolau, B. J., Ohlrogge, J. B., and Wurtele, E. S. 2003. Plant biotin-containing carboxylases. Arch. Biochem. Biophys. 414:211222.Google Scholar
Petit, C., Bay, G., Pernin, F., and Délye, C. 2010b. Prevalence of cross- or multiple resistance to the acetyl-coenzyme A carboxylase inhibitors fenoxaprop, clodinafop and pinoxaden in black-grass (Alopecurus myosuroides Huds.) in France. Pest Manag. Sci. 66:168177.Google Scholar
Petit, C., Duhieu, B., Boucansaud, K., and Délye, C. 2010a. Complex genetic control of non-target-site-based resistance to herbicides inhibiting acetyl-coenzyme A carboxylase and acetolactate-synthase in Alopecurus myosuroides Huds. Plant Sci. 178:501509.Google Scholar
Porter, D. J., Kopec, M., and Hofer, U. 2005. Pinoxaden: a new selective postemergence graminicide for wheat and barley. Proc. Weed Sci. Soc. Am. 45:95.Google Scholar
Powles, S. B. and Yu, Q. 2010. Evolution in action: plants resistant to herbicides. Ann. Rev. Plant Biol. 61:317347.Google Scholar
Preston, C. and Mallory-Smith, C. A. 2001. Biochemical mechanism, inheritance, and molecular genetics of herbicide resistance in weeds. Pages 2360 in Powles, S. B. and Shaner, D. L., eds. Herbicide Resistance and World Grains. Boca Raton, FL CRC.Google Scholar
Qiang, S. 2001. Weed Science. Beijing Chinese Agricultural Publishing House. 2471 p.Google Scholar
Scarabel, L., Panozzo, S., Varotto, S., and Sattin, M. 2011. Allelic variation of the ACCase gene and response to ACCase-inhibiting herbicides in pinoxaden-resistant Lolium spp. Pest Manag. Sci. 67:932941.Google Scholar
Uludag, A., Park, K. W., Cannon, J., and Mallory-Smith, C. A. 2008. Cross resistance of acetyl-CoA carboxylase (ACCase) inhibitor resistant wild oat (Avena fatua) biotypes in the Pacific Northwest. Weed Technol. 22:142145.Google Scholar
White, G. M., Moss, S. R., and Karp, A. 2005. Differences in the molecular basis of resistance to the cyclohexanedione herbicide sethoxydim in Lolium multiflorum . Weed Res. 45:440448.Google Scholar
Weed Science Society of America. 1998. “Herbicide resistance” and “herbicide tolerance” defined. Weed Technol. 12:789.CrossRefGoogle Scholar
Yang, C. 2007. Study on resistance of Japanese foxtail (Alopecurus japonicus) to haloxyfop-R-methyl in oilseed rape field. . Nanjing Nanjing Agric. Univ. 77 p. [In Chinese].Google Scholar
Yu, L. P. C., Kim, Y. S., and Tong, L. 2010. Mechanism for the inhibition of the carboxyltransferase domain of acetyl-coenzyme A carboxylase by pinoxaden. Proc. Natl. Acad. Sci. USA. 107:2207222077.Google Scholar
Yu, Q., Collavo, A., Zheng, M-Q., Owen, M., Sattin, M., and Powles, S. B. 2007. Diversity of acetyl-coenzyme A carboxylase mutations in resistant Lolium populations: evaluation using clethodim. Plant Physiol. 145:547558.Google Scholar
Zagnitko, O., Jelenska, J., Tevzadze, G., Haselkorn, R., and Gornicki, P. 2001. An isoleucine/leucine residue in the carboxyltransferase domain of acetyl-CoA carboxylase is critical for interaction with aryloxyphenoxypropionate and cyclohexanedione inhibitors. Proc. Natl. Acad. Sci. USA. 98:66176622.Google Scholar
Zhang, X. Q. and Powles, S. B. 2006. Six amino acid substitutions in the carboxyl- transferase domain of the plastidic acetyl-CoA carboxylase gene are linked with resistance to herbicides in a Lolium rigidum population. New Phytologist. 172:636645.Google Scholar