Published online by Cambridge University Press: 12 June 2017
The newly developed herbicide buthidazole {3-[5-(1,1-dimethylethyl)-1,3,4-thiadizol-2-yl]-4-hydroxy-1-methyl-2-imidazolidinone} was studied with respect to its interaction with soils and homoionic clay minerals and its response to irradiation with ultraviolet light. Results showed that it could enter the interlamellar spaces of swelling clays such as smectite. Isothermic adsorption studies indicated that Cu+2-smectite adsorbed more buthidazole than Cu+2-kaolinite. The Cu+2-clay adsorption isotherm fitted the Langmuir model. The effect of exchangeable cations on adsorption was not significant in soils of high organic matter content. Bioassay studies indicated that buthidazole's phytotoxicity was not decreased in either clays or in organic soils. Infrared spectroscopic studies showed the coordination of buthidazole with Cu+2 through C=O Cu interaction with buthidazole resulted in a ligand-to-metal ratio to 1:1. Protonation of buthidazole occurred in Al+3-and H+-smectite. The herbicide was labile to UV-light irradiation at 254 nm but not at 366 nm. The photoconversion indicated a first-order reaction. The photolytic product(s) included the –N=C=O structure. Copper(II) ions, which form complexes, retarded photolysis of buthidazole in UV-light, but the Ca+2 ion, which is unable to form complexes, did not.