Published online by Cambridge University Press: 12 June 2017
The influence of soil moisture on wild oat control from soil-incorporated methyl ester of diclofop {2-[4-(2,4-dichlorophenoxy)-phenoxy] propanoic} was determined in the greenhouse. Wild oat control with soil-incorporated diclofop at 1.5 or 3 ppmw increased linearly when soil moisture in a Tiffany sandy loam increased from 18.5 to 23.5% (75% to 125% of field capacity). The efficacy of soil-incorporated diclofop was not reduced when soil moisture was allowed to decrease from 21 (field capacity) to 18.5, 16, 13.5, or 11% (wilting point) before rewatering to 21%. The soil moisture level at the time of herbicide application determined the degree of wild oat control with soil-incorporated diclofop. Wild oat control with diclofop increased when a Tiffany sandy loam with 16% moisture (50% of field capacity) at the time of herbicide application, was watered to field capacity after 8 or 12 days delay, and control did not change with watering to field capacity at the time of herbicide application or when delayed 4 or 16 days. The movement of 14C-diclofop in soil columns was greater within coarse than fine textured soils and increased with water volumes applied, regardless of soil type. Further, the leachability of 14C-diclofop was two and a half times greater than that of 14C-trifluralin (α,α,α-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine).