Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-18T21:44:18.795Z Has data issue: false hasContentIssue false

Implications of Sucrose Transport Mechanisms for the Translocation of Herbicides

Published online by Cambridge University Press:  12 June 2017

Malcolm D. Devine
Affiliation:
Dep. Crop Sci. and Plant Ecol., Univ. Saskatchewan, Saskatoon, Sask. S7N 0W0
Linda M Hall
Affiliation:
Dep. Crop Sci. and Plant Ecol., Univ. Saskatchewan, Saskatoon, Sask. S7N 0W0

Abstract

Herbicide translocation in the phloem is dependent on the production of transport sugar(s) in source tissues and their loading into the phloem. The movement of sugars (primarily sucrose) from mesophyll cells to the sieve element-companion cell complex has been the subject of much investigation in recent years. The current evidence suggests that there are at least two sucrose loading mechanisms in higher plants: one involves sucrose transfer via the apoplasm and subsequent loading into the phloem, while a second mechanism involves movement through continuous symplasmic connections between the mesophyll cells and the phloem. Similarly, both symplasmic and apoplasmic routes may exist at the site of unloading in sink tissue. It is postulated that the mechanism of sucrose loading may influence herbicide entry into the phloem and the likelihood of herbicide transfer to the xylem at the site of loading or unloading.

Type
Special Topics
Copyright
Copyright © 1990 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Altus, D. P. and Canny, M. J. 1985. Loading of assimilate in wheat leaves. II. The path from chloroplast to vein. Plant Cell Environ. 8:275285.Google Scholar
2. Bennet, A. B., Damon, S., Osteryoung, K., and Hewitt, J. 1986. Mechanism of retrieval and metabolism following phloem loading. Pages 307316 in Cronshaw, J., Lucas, W. L., and Giaquinta, R. T., eds. Phloem Transport Alan R. Liss, Inc., New York.Google Scholar
3. Boyer, J. S. 1985. Water transport. Annu. Rev. Plant Physiol. 36:473516.Google Scholar
4. Bromilow, R. H., Chamberlain, K., and Evans, A. A. 1990. Physicochemical aspects of phloem translocation of herbicides. Weed Sci. 38:305314.Google Scholar
5. Delrot, S. 1987. Phloem loading: apoplastic or symplastic? Plant Physiol. Biochem. 25:667676.Google Scholar
6. Delrot, S. and Bonnemain, J. -L. 1985. Mechanism of control of phloem transport. Physiol. Veg. 23:199220.Google Scholar
7. Devine, M. D. 1989. Phloem translocation of herbicides. Rev. Weed Sci. 4:191213.Google Scholar
8. Devine, M. D. and Vanden Born, W. H. 1985. Absorption, translocation, and foliar activity of chlorsulfuron and clopyralid in Canada thistle (Cirsium arvense) and perennial sowthistle (Sonchus arvensis). Weed Sci. 33:524530.Google Scholar
9. Dewey, S. A. and Appleby, A. P. 1983. A comparison between glyphosate and assimilate translocation patterns in tall morningglory (Ipomoea purpurea). Weed Sci. 31:308314.Google Scholar
10. Evert, R. F. and Mierzwa, R. J. 1986. Pathway(s) of assimilate movement from mesophyll cells to sieve tubes in the Beta vulgaris leaf. Pages 419432 in Cronshaw, J., Lucas, W. J., and Giaquinta, R. T., eds. Phloem Transport, Alan R. Liss, Inc., New York.Google Scholar
11. Fensom, D. S. 1981. Problems arising from a Munch-type pressure flow mechanism of sugar transport in the phloem. Can. J. Bot. 59:425432.Google Scholar
12. Fisher, D. B. 1978. An evaluation of the Münch hypothesis for phloem transport in soybean. Planta 139:2528.Google Scholar
13. Fisher, D. G. 1988. Movement of lucifer yellow in leaves of Coleus blumei Benth. Plant Cell Environ. 11:639644.Google Scholar
14. Fondy, B. R. and Geiger, D. R. 1985. Diurnal changes in allocation of newly fixed carbon in exporting sugar beet leaves. Plant Physiol. 78:753757.Google Scholar
15. Fritz, E., Evert, R. F., and Heyser, W. 1983. Microautoradiographic studies of phloem loading and transport in the leaf of Zea mays L. Planta 159:193206.Google Scholar
16. Geiger, D. R. and Bestman, H. D. 1990. Self-limitation of herbicide mobility by phytotoxic action. Weed Sci. 38:324329.CrossRefGoogle Scholar
17. Geiger, D. R., Sovonick, S. A., Shock, T. L., and Fellows, R. J. 1974. Role of free space in translocation in sugar beet. Plant Physiol. 54:892898.Google Scholar
18. Giaquinta, R. T. 1976. Evidence for phloem loading from the apoplast. Chemical modification of membrane sulfhydryl groups. Plant Physiol. 57:872875.Google Scholar
19. Gougler, J. A. and Geiger, D. R. 1981. Uptake and distribution of N-(phosphonomethyl) glycine in sugarbeet plants. Plant Physiol. 68:668672.Google Scholar
20. Heyser, W. 1980. Phloem loading in the maize leaf. Ber. Dtsch. Bot. Ges. 93:221228.Google Scholar
21. Heyser, W., Evert, R. F., Fritz, E., and Eschrich, W. 1978. Sucrose in the free space of translocating maize leaf bundles. Plant Physiol. 62:491494.Google Scholar
22. Hitz, W. D. 1986. Molecular determinants of sugar carrier specificity. Pages 2740 in Cronshaw, J., Lucas, W. J., and Giaquinta, R. T., eds. Phloem Transport. Alan R. Liss, Inc., New York.Google Scholar
23. Hsu, F. C. and Kleier, D. 1990. Phloem mobility of xenobiotics. III. Sensitivity of unified model to plant parameters and application to patented chemical hybridizing agents. Weed Sci. 38:315323.Google Scholar
24. Huber, S. C. and Moreland, D. E. 1981. Co-transport of potassium and sugars across the plasmalemma of mesophyll protoplasts. Plant Physiol. 67:163169.Google Scholar
25. Jeschke, W. D., Atkins, C. A., and Pate, J. S. 1985. Ion circulation via phloem and xylem between root and shoot of nodulated white lupin. J. Plant Physiol. 117:319330.CrossRefGoogle Scholar
26. Komor, E. and Orlich, G. 1986. Sugar-proton symport: from single cells to phloem loading. Pages 5365 in Cronshaw, J., Lucas, W. J., and Giaquinta, R. T., eds. Phloem Transport. Alan R. Liss, Inc., New York.Google Scholar
27. Komor, E., Thom, M., and Maretzki, A. 1981. The mechanism of sugar uptake by sugarcane suspension cells. Planta 153:181192.Google Scholar
28. Lin, W. 1985. Energetics of sucrose transport into protoplasts from developing soybean cotyledons. Plant Physiol. 78:4145.Google Scholar
29. Lin, W. 1986. Sucrose transport in soybean protoplasts. Pages 8992 in Cronshaw, J., Lucas, W. J., and Giaquinta, R. T., eds. Phloem Transport. Alan R. Liss, Inc., New York.Google Scholar
30. Lin, W., Schmitt, M., Hitz, W. D., and Giaquinta, R. T. 1984. Sugar transport into protoplasts isolated from developing soybean cotyledons. I. Protoplast isolation and general characteristics of sugar transport. Plant Physiol. 75:936940.Google Scholar
31. Madore, M. A. and Lucas, W. J. 1986. Characterization of the source leaf symplast by means of lucifer yellow CH. Pages 129133 in Cronshaw, J., Lucas, W. J., and Giaquinta, R. T., eds. Phloem Transport. Alan R. Liss, Inc., New York.Google Scholar
32. Madore, M. A. and Lucas, W. J. 1987. Control of photoassimilate movement in source-leaf tissues of Ipomoea tricolor Cav. Planta 171:197204.Google Scholar
33. Magnuson, C. E., Goeschl, J. D., and Fares, Y. 1986. Experimental tests of the Münch-Horowitz theory of phloem transport: effects of loading rates. Plant Cell Environ. 9:103109.Google Scholar
34. Martin, R. A. and Edgington, L. V. 1981. Comparative systemic translocation of several xenobiotics and sucrose. Pestic. Physiol. Biochem. 16:8796.Google Scholar
35. Maynard, J. W. and Lucas, W. J. 1982. Sucrose and glucose uptake into Beta vulgaris leaf tissues. A case for general (apoplastic) retrieval systems. Plant Physiol. 70:14361443.Google Scholar
36. McAllister, R. S. and Haderlie, L. C. 1985. Translocation of 14C-glyphoste and 14C-labeled photoassimilates in Canada thistle (Cirsium arvense). Weed Sci. 33:153159.Google Scholar
37. Münch, E. 1930. Die Stoffbewegungen in der Pflanze. Gustav Fischer, Jena. 234 pp.Google Scholar
38. Pate, J. S. 1986. Xylem-to-phloem transfer–vital component of the nitrogen-partitioning system of a nodulated legume. Pages 445462 in Cronshaw, J., Lucas, W. J., and Giaquinta, R. T., eds. Phloem Transport. Alan R. Liss, Inc., New York.Google Scholar
39. Reinhold, L. and Kaplan, A. 1984. Membrane transport of sugars and amino acids. Annu. Rev. Plant Physiol. 35:4583.Google Scholar
40. Ripp, K. G., Vitanen, P. V., Hitz, W. D., and Franceschi, V. R. 1988. Identification of a membrane protein associated with sucrose transport into cells of developing soybean cotyledons. Plant Physiol. 88:14351445.Google Scholar
41. Schmitt, M. R., McKelvey, S. A., Fellows, R. J., and Giaquinta, R. T. 1986. Invertase and sucrose metabolism in source and sink leaves. Pages 411418 in Cronshaw, J., Lucas, W. J., and Giaquinta, R. T., eds. Phloem Transport Alan R. Liss, Inc., New York.Google Scholar
42. Stanzel, M. R., Sjolund, D., and Komor, E. 1988. Transport of glucose, fructose and sucrose by Streptanthus tortuosus suspension cells. I. Uptake at low sugar concentrations. Planta 174:201209.Google Scholar
43. Terry, B. R. and Robards, A. W. 1987. Hydrodynamic radius alone governs the mobility of molecules through plasmodesmata. Planta 171:145157.Google Scholar
44. Thorne, J. H. and Rainbird, R. M. 1983. An in vivo technique for the study of phloem unloading in seed coats of developing soybean seeds. Plant Physiol. 72:268271.Google Scholar
45. Thorne, J. H. 1986. Sieve tube unloading. Pages 211224 in Cronshaw, J., Lucas, W. J., and Giaquinta, R. T., eds. Phloem Transport. Alan R. Liss, Inc., New York.Google Scholar
46. Tyree, M. T., Peterson, C. A., and Edgington, L. V. 1979. A simple theory regarding the ambimobility of xenobiotics with special reference to the nematicide, oxamyl. Plant Physiol. 63:367374.Google Scholar
47. van Bel, A.J.E. 1987. The apoplastic concept of phloem loading has no universal validity. Plant Physiol. Biochem. 26:677686.Google Scholar
48. van Bel, A.J.E., van Kesteren, W.J.P., and Papenhuijzen, C. 1988. Ultrastructural indications for coexistence of symplastic and apoplastic loading in Commelina benghalensis leaves. Planta 176:159172.Google Scholar
49. van Kesteren, W.J.P., van der Schoot, C., and van Bel, J. E. 1988. Symplastic transfer of fluorescent dyes from mesophyll to sieve tubes in stripped leaf tissue and partly isolated minor veins of Commelina benghalensis . Plant Physiol. 88:667670.Google Scholar
50. Wang, X. D. and Canny, M. J. 1986. Loading and translocation of assimilate in the fine veins of sunflower leaves. Plant Cell Environ. 8:669685.Google Scholar
51. Wilson, C., Oross, J. W., and Lucas, W. J. 1985. Sugar uptake into Allium cepa leaf tissue: an integrated approach. Planta 164:227240.Google Scholar