Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T20:43:18.144Z Has data issue: false hasContentIssue false

Identification and characterization of different accessions of itchgrass (Rottboellia cochinchinensis)

Published online by Cambridge University Press:  20 January 2017

Mateus F. Bachega
Affiliation:
DBAA—FCAV/UNESP, Rod. de Acesso Prof. Paulo Donato Castellane, s/n CEP 14884-900, Jaboticabal, SP, Brazil
José Roberto Moro
Affiliation:
DBAA—FCAV/UNESP, Rod. de Acesso Prof. Paulo Donato Castellane, s/n CEP 14884-900, Jaboticabal, SP, Brazil
Manoel Victor F. Lemos
Affiliation:
DBAA—FCAV/UNESP, Rod. de Acesso Prof. Paulo Donato Castellane, s/n CEP 14884-900, Jaboticabal, SP, Brazil
Eliane C. C. Alves
Affiliation:
DBAA—FCAV/UNESP, Rod. de Acesso Prof. Paulo Donato Castellane, s/n CEP 14884-900, Jaboticabal, SP, Brazil
Marco Aurélio S. Silva
Affiliation:
DBAA—FCAV/UNESP, Rod. de Acesso Prof. Paulo Donato Castellane, s/n CEP 14884-900, Jaboticabal, SP, Brazil
Fabíola V. Moro
Affiliation:
DBAA—FCAV/UNESP, Rod. de Acesso Prof. Paulo Donato Castellane, s/n CEP 14884-900, Jaboticabal, SP, Brazil

Abstract

Studies were conducted to identify and characterize different accessions of itchgrass. Seeds were collected in the counties of Aramina, Campinas, Dumont, Igarapava, Jaboticabal, and Ribeirão Preto, all in the state of São Paulo, Brazil. Accessions were characterized based on dimensions of their stomata, stomatal index (SI), and length and width of their seed (caryopses and husk). Chromosome number and length also were determined, and accessions were further differentiated using molecular markers (polymerase chain reaction [PCR]). Itchgrass from Ribeirão Preto had much longer and narrower seeds than those from the other locations, and their husks were longer as well. Accessions had similar SIs, both on the abaxial and adaxial leaf surfaces. Stomata from Campinas and Igarapava accessions were longer and wider, whereas those from Dumont and Ribeirão Preto were similar and smaller than all others. The accession from Ribeirão Preto is diploid (2n = 20); the rest are polyploid, with the total length of chromosomes smaller than all others. These differences were confirmed by molecular differentiation (PCR).

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Arévalo, R. A. and Bertoncini, E. I. 1994. Biologia e manejo de Rottboellia exalta L. f. na cultura da cana-de-açúcar Saccharum spp: análise do problema. Piracicaba, Brazil: Estação Experimental de cana-de-açècar—IAC, 1992. 24 p. [Publicação especial, 2]Google Scholar
Brasileiro, A.C.M. and Carneiro, V.T.C. 1998. Manual de transormação genética de plantas. Brasília, Brazil: EMBRAPA-SPI. 309 p.Google Scholar
Cepero, G. and Rodriguez, G. S. 1983. Weeds in sugarcane (Saccharum sp.) hybrids. Cent. Agric. 10:4755.Google Scholar
Cristopher, J., Kumari Sasikala, K. S., and Mini, L. S. 1989. Cyto-taxonomic studies of Rottboellia exaltata Linn. complex. Cytologia 54:335342.Google Scholar
Cutter, E. G. 1978. Plant Anatomy. Part I. Cells and Tissues. London: Edward Arnold. 313 p.Google Scholar
Ferreira, M. E. and Grattapaglia, D. 1995. Introdução ao uso de marcadores moleculares em análise genética. 2nd ed. Brasília, Brazil: EMBRAPA-CENARGEN. pp. 1112.Google Scholar
Fisher, H. H., Menendez, R. A., Daley, L. S., Robb-Spencer, D., and Crabtree, G. D. 1987. Biochemical characterization of itchgrass (Rottboellia exaltata) biotypes. Weed Sci. 35:333338.Google Scholar
Holm, L. G., Plucknett, D. L., Pancho, J. V., and Herberger, J. P. 1977. The World's Worst Weeds. Distribution and Biology. Honolulu: University Press of Hawaii. pp. 139144.Google Scholar
Kissmann, K. G. 1997. Plantas infestantes e nocivas. Tomo-I. 2nd ed. São Paulo, Brazil: Basf Brasileira S.A. pp. 723727.Google Scholar
Mercado, B. L. 1978. Biology, problems and control of Rottboellia exaltata L. f., a monograph. Biotrop. Bull. Volume 14, 38 p.Google Scholar
Millhollon, R. W. 1982. Reproduction variability in biotypes of johnsongrass (Sorghum halepense (L.) Pers.) and itchgrass (Rottboellia exaltata L. f.). Weed Sci. 22:2223.Google Scholar
Millhollon, R. W. 1992. Effects of itchgrass (Rottboellia cochinchinensis) interference in growth and yield of sugarcane (Saccharum sp.) hybrids. Weed Sci. 40:4853.Google Scholar
Millhollon, R. W. and Burner, D. M. 1993. Itchgrass (Rottboellia exaltata) biotypes in world populations. Weed Sci. 41:379387.Google Scholar
Morales, R. and Fernandes, F. 1985. Economic damage threshold for Rottboellia exaltata in sugarcane. Cien. Tec. Agric. Prot. Plantas 8:5566.Google Scholar
Pamplona, P. P. and Mercado, B. H. 1981. Ecotypes of Rottboellia exaltata L. f. in the Philippines. II. Response to daylength and nitrogen application. Philipp. Agric. 64:371378.Google Scholar
Silva, C.E.B., Pavani, M.C.M.D., and Alves, P. L.C.A. 1996. Fatores que afetam a germinação de sementes de Rottboellia exaltata: I. Temperatura e disponibilidade de água. In Proceedings of the 9th Congresso da Sociedade Botânica de São Paulo; São Carlos, SP, Brazil Sociedade Botânica de São Paulo. p. 78.Google Scholar
Singh, R. J. 1993. Plant Cytogenetics. Tokyo: CRC Press. pp. 569574.Google Scholar
Williams, J.G.K., Kubelik, A. R., Livak, K. J., Rafalski, J. A., and Tingey, S. V. 1990. DNA polymorphism amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18:65316535.Google Scholar