Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-02T23:13:29.920Z Has data issue: false hasContentIssue false

Herbicides that Inhibit Acetohydroxyacid Synthase

Published online by Cambridge University Press:  12 June 2017

Mark A. Stidham*
Affiliation:
Agric. Res. Div., American Cyanamid Co., Princeton, NJ 08543-0400, U.S.A.

Abstract

Acetohydroxyacid synthase was discovered as the site of action of imidazolinone and sulfonylurea herbicides over 6 yr ago. In recent years, advances have been made in the understanding of this enzyme as a herbicide target site. Derivatives of both imidazolinones and sulfonylureas have yielded new herbicide chemistry. AH of the herbicides display unusual “slow-binding” behavior with the enzyme, and this behavior may help explain efficacy of the herbicides. Resistance to these herbicides has been developed through a number of different procedures, and the mechanism of resistance is through changes in sensitivity of the enzyme to the herbicides. The changes are either selective to only one class of chemistry, or broad to a number of classes of chemistry. These data support the idea that binding sites for the herbicides on the enzyme are only partially overlapping. Progress in purification of AHAS from corn includes discovery of the existence of the enzyme in monomer and oligomer aggregation states. The interaction of the enzyme with the herbicides is affected by enzyme aggregation state.

Type
Special Topics
Copyright
Copyright © 1991 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Alvarado, S. I., Crews, A. D., Wepplo, P., Doehner, R. F., Brady, T. E., Gange, D. M., and Little, D. L. 1989. Benzenesulfonyl carboxamide compounds useful as herbicidal agents. US Patent Number 4,883,914.Google Scholar
2. Anderson, P. C. and Hibberd, K. A. 1985. Evidence for the interaction of an imidazolinone herbicide with leucine, valine, and isoleucine metabolism. Weed Sci. 33:479485.CrossRefGoogle Scholar
3. Bedbrook, J., Chaleff, R. S., Falco, S. C., Mazur, B. J., and Yadav, N. 1988. Nucleic Acid Fragment Encoding Herbicide Resistant Plant Acetolactate Synthase. Eur. Patent Appl. 0257993.Google Scholar
4. Chaleff, R. S. and Ray, T. B. 1984. Herbicide-resistant mutants from tobacco cell cultures. Science 223:11481151.Google Scholar
5. Chaleff, R. S. and Mauvais, C. V. 1984. Acetolactate synthase is the site of action of two sulfonylurea herbicides in higher plants. Science 224:14431445.Google Scholar
6. Durner, J. and Boger, P. 1988. Acetolactate synthase from barley (Hordeum vulgare L.): purification and partial characterization. Z. Naturforsch. 43c:850856.CrossRefGoogle Scholar
7. Falco, S. C., Knowlton, S., LaRossa, R. A., Smith, J. K., and Mazur, B. J. 1987. Herbicides that inhibit amino acid biosynthesis: The sulfonylureas—a case study. Pages 149158 in 1987 British Crop Prot. Conf.—Weeds. Surrey, U.K.:BCPC Publications.Google Scholar
8. Gabard, J. M., Charest, P. J., Iyer, V. N., and Mild, B. L. 1989. Cross-resistance to short residual sulfonylurea herbicides in transgenic tobacco plants. Plant Physiol. 91:574580.Google Scholar
9. Gerwick, B. C., Subramanian, M. V., Loney-Gallant, V. I. 1990. Mechanism of Action of the 1,2,4-triazolo[1,5-α]pyrimidines. Pestic. Sci. 29:357364.CrossRefGoogle Scholar
10. Hall, L. M. and Devine, M. D. 1990. Cross-resistance of a chlorsulfuron-resistant biotype of Stellaria media to a triazolopyrimidine herbicide. Plant Physiol. 93:962966.CrossRefGoogle ScholarPubMed
11. Haughn, G. and Somerville, C. 1986. Sulfonylurea-resistant mutants of Arabidopsis thaliana . Mol. Gen. Genet. 204:430434.Google Scholar
12. Haughn, G. W., Smith, J., Mazur, B., and Somerville, C. 1988. Transformation with a mutant Arabidopsis acetolactate synthase gene renders tobacco resistant to sulfonylurea herbicides. Mol. Gen. Genet. 211:266271.CrossRefGoogle Scholar
13. Hawkes, T. R. 1989. Studies of herbicides which inhibit branched chain amino acid biosynthesis. Pages 129136 in Prospects for Amino Acid Biosynthesis Inhibitors in Crop Protection and Pharmaceutical Chemistry. Coping, L. G., Dalziel, J., and Dodge, A. D., eds. British Crop Protection Council, Farnham, Surrey, U.K. Google Scholar
14. Jones, A. V., Young, R. M. and Leto, K. J. 1985. Subcellular localization and properties of acetolactate synthase, target site of the sulfonylurea herbicides. Plant Physiol. 77:S–293.Google Scholar
15. LaRossa, R. A. and Schloss, J. V. 1984. The herbicide sulfometuron methyl is bacteriostatic due to inhibition of acetolactate synthase. J. Biol. Chem. 259:87538757.Google Scholar
16. Mazur, B. J., Chui, C-F., and Smith, J. K. 1987. Isolation and characterization of plant genes coding for acetolactate synthase, the target enzyme for two classes of herbicides. Plant Physiol. 85:11101117.Google Scholar
17. Mazur, B. J. and Falco, S. C. 1989. The development of herbicide resistant crops. Ann. Rev. Plant Physiol. 40:441470.Google Scholar
18. Miflin, B. J. 1971. Cooperative feedback control of barley, acetohydroxyacid synthase by leucine, isoleucine, and valine. Arch. Biochem. Biophys. 146:542550.Google Scholar
19. Miflin, B. J. 1974. The location of nitrate reductase and other enzymes related to amino acid biosynthesis in the plastids of root and leaves. Plant Physiol. 54:550555.CrossRefGoogle Scholar
20. Miflin, B. J. and Cave, P. R. 1972. The control of leucine, isoleucine, and valine biosynthesis in a range of higher plants. J. Exp. Bot. 23:511516.CrossRefGoogle Scholar
21. Muhitch, M. J., Shaner, D. L., and Stidham, M. A. 1987. Imidazolinones and acetohydroxyacid synthase from higher plants. Plant Physiol. 83:451456.Google Scholar
22. Oaks, A. 1965. The synthesis of leucine in maize embryos. Biochim. Biophys. Acta 111:7989.CrossRefGoogle ScholarPubMed
23. Ray, T. B. 1984. Site of action of chlorsulfuron. Plant Physiol. 75:827831.Google Scholar
24. Relton, J. M., Wallsgrove, R. M., Bourgin, J. P., and Bright, S.W.J. 1986. Altered feedback sensitivity of acetohydroxyacid synthase from valine-resistant mutants of tobacco (Nicotiana tabacum L.). Planta 169:4650.CrossRefGoogle ScholarPubMed
25. Rhodes, D., Hogan, A. L., Deal, L., Jamieson, G. C., and Haworth, P. 1987. Amino acid metabolism of Lemna minor L. I. Responses to chlorsulfuron. Plant Physiol. 84:775780.CrossRefGoogle Scholar
26. Saxena, P. K. and King, J. 1988. Herbicide resistance in Datura innoxia . Plant Physiol. 86:863867.Google Scholar
27. Schloss, J. V. 1984. Interaction of the herbicide sulfometuron methyl with acetolactate synthase: a slow binding inhibitor. Pages 737740 in Flavins and Flavoproteins. Bray, R. C., Engel, P. C., and Mayhew, S. G., eds. Walter de Gruyter & Co., Berlin.Google Scholar
28. Schloss, J. V. 1988. Significance of slow-binding enzyme inhibition and its relationship to reaction-intermediate analogues. Acc. Chem. Res. 21, 348353.CrossRefGoogle Scholar
29. Schloss, J. V., Van Dyk, D. E., Vasta, J. F., and Kutny, R. M. 1985. Purification and properties of Salmonella typhimurium acetolactate synthase isozyme II from Escherichia coli HB101/pDU9. Biochemistry 24, 49524959.Google Scholar
30. Schloss, J. V., Ciskanik, L. M., and Van Dyk, D. E. 1988. Origin of the herbicide binding site of acetolactate synthase. Nature 331:360362.CrossRefGoogle Scholar
31. Schulz, A., Sponemann, P., Kocher, H., and Wengenmayer, F. 1988. The herbicidally active experimental compound Hoe 704 is a potent inhibitor of the enzyme acetolactate reductoisomerase. FEBS Lett. 238, 375378.Google Scholar
32. Schulze-Siebert, D., Heineke, D., Scharf, H., and Schultz, G. 1984. Pyruvate-derived amino acids in spinach chloroplasts. Plant Physiol. 76:465471.CrossRefGoogle ScholarPubMed
33. Shaner, D. L. and Anderson, P. C. 1985. Mechanism of action of the imidazolinones and cell culture selection of tolerant maize. Pages 287299 in Biotechnology in Plant Science-Relevance to Agriculture in the Eighties. Zaitlin, M., Day, P., Hollaender, A., eds. Academic Press, New York.Google Scholar
34. Shaner, D. L., Anderson, P. C., and Stidham, M. A. 1984. Imidazolinone: potent inhibitors of acetohydroxyacid synthase. Plant Physiol. 76:545546.Google Scholar
35. Shaner, D. L. and Reider, M. L. 1986. Physiological responses of corn (Zea mays) to AC 243,997 in combination with valine, leucine, and isoleucine. Pestic. Biochem. Physiol. 25:248257.Google Scholar
36. Shaner, D. L., Singh, B. K., and Stidham, M. A. 1990. Interaction of imidazolinones with plant acetohydroxy acid synthase: Evidence for in vivo binding and competition with sulfometuron methyl. J. Agric. Food Chem. 38:12791282.Google Scholar
37. Sharma, R. K. and Mazumder, R. 1970. Purification, properties, and feedback control of L-threonine dehydratase from spinach. J. Biol. Chem. 245:30083014.Google Scholar
38. Singh, B. K., Newhouse, K. E., Stidham, M. A., and Shaner, D. L. 1989. Acetohydroxyacid synthase-imidazolinone interactions. Pages 8795 in 1989 British Crop Protection Monograph 42. Copping, L. G., Dalziel, J., and Dodge, A. D., eds. Farnham, Surrey, U.K. Google Scholar
39. Singh, B. K., Newhouse, K. E., Stidham, M. A., and Shaner, D. L. 1990. Acetohydroxyacid synthase-imidazolinone interaction. In The Biosynthesis of Branched-chain Amino Acids. Barak, A., Schloss, J. V., and Chipman, D. M., eds. VCH publishers FRG Pages 357372.Google Scholar
40. Singh, B. K. and Schmitt, G. K. 1989. Flavin adenine dinucleotide causes oligomerization of acetohydroxyacid synthase from Black Mexican Sweet corn cells. FEBS Lett. 258:113115.CrossRefGoogle Scholar
41. Singh, B. K., Stidham, M. A., and Shaner, D. L. 1988. Separation and characterization of two forms of acetohydroxyacid synthase from black Mexican sweet corn cells. J. Chrom. 444:251261.Google Scholar
42. Smith, J. K., Schloss, J. V., Mazur, B. J. 1989. Functional expression of plant acetolactate synthase genes in Escherichia coli . Proc. Natl. Acad. Sci., U.S.A. 86:41794183.Google Scholar
43. Stidham, M. A. and Shaner, D. L. 1990. Imidazolinone inhibition of acetohydroxyacid synthase in vitro and in vivo. Pestic. Sci. 29:335340.Google Scholar
44. Subramanian, J. V., Loney, V., and Pao, L. 1989. Mechanism of action of 1,2,4-triazolo[1,5-α]pyrimidine sulfonamide herbicides. Pages 97100 in 1989 British Crop Protection Monograph 42. Copping, L. G., Dalziel, J., and Dodge, A. D., eds. Farnham, Surrey, U.K. Google Scholar
45. Wiersma, P. A., Schmiemann, M. G., Condie, J. A., Crosby, W. L., and Moloney, M. M. 1989. Isolation expression and phylogenetic inheritance of an acetolactate synthase gene from Brassica napus . Mol. Gen. Genet. 219:413420.Google Scholar
46. Winder, T. and Spalding, M. 1988. Imazaquin and chlorsulfuron resistance and cross resistance in mutants of Chlamydomonas reinhardtii . Mol. Gen. Genet. 213:394399.CrossRefGoogle ScholarPubMed
47. Japanese Patent Number J6 3196–570-A.Google Scholar