Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T19:35:38.278Z Has data issue: false hasContentIssue false

Herbicidal Activity of UCC-C4243 and Acifluorfen is Due to Inhibition of Protoporphyrinogen Oxidase

Published online by Cambridge University Press:  12 June 2017

Terry R. Wright
Affiliation:
Grad. Res. Asst. and Asst. Prof., Dep. of Crop and Soil Sci., Washington State Univ., Pullman, WA 99164-6420; Plant Physiol., U.S. Dep Agric., Agric. Res. Serv., Pullman, WA 99164-6416; and Plant Physiols., U.S. Dep. Agric., Agric Res. Serv., South. Weed Sci. Lab., Stoneville, MS 38776
E. Patrick Fuerst
Affiliation:
Grad. Res. Asst. and Asst. Prof., Dep. of Crop and Soil Sci., Washington State Univ., Pullman, WA 99164-6420; Plant Physiol., U.S. Dep Agric., Agric. Res. Serv., Pullman, WA 99164-6416; and Plant Physiols., U.S. Dep. Agric., Agric Res. Serv., South. Weed Sci. Lab., Stoneville, MS 38776
Alex G. Ogg Jr.
Affiliation:
Grad. Res. Asst. and Asst. Prof., Dep. of Crop and Soil Sci., Washington State Univ., Pullman, WA 99164-6420; Plant Physiol., U.S. Dep Agric., Agric. Res. Serv., Pullman, WA 99164-6416; and Plant Physiols., U.S. Dep. Agric., Agric Res. Serv., South. Weed Sci. Lab., Stoneville, MS 38776
Ujjana B. Nandihalli
Affiliation:
Grad. Res. Asst. and Asst. Prof., Dep. of Crop and Soil Sci., Washington State Univ., Pullman, WA 99164-6420; Plant Physiol., U.S. Dep Agric., Agric. Res. Serv., Pullman, WA 99164-6416; and Plant Physiols., U.S. Dep. Agric., Agric Res. Serv., South. Weed Sci. Lab., Stoneville, MS 38776
Hee Jae Lee
Affiliation:
Grad. Res. Asst. and Asst. Prof., Dep. of Crop and Soil Sci., Washington State Univ., Pullman, WA 99164-6420; Plant Physiol., U.S. Dep Agric., Agric. Res. Serv., Pullman, WA 99164-6416; and Plant Physiols., U.S. Dep. Agric., Agric Res. Serv., South. Weed Sci. Lab., Stoneville, MS 38776

Abstract

Laboratory and greenhouse studies were conducted to determine the mode of action of soil- and foliar-applied UCC-C4243. Experiments demonstrated that UCC-C4243 required light for phytotoxicity, phytotoxic symptoms were similar to inhibitors of porphyrin synthesis such as acifluorfen, and UCC-C4243 potently inhibited protoporphyrinogen oxidase. Germination and emergence of field pennycress and lentil in the dark were not affected by soil-incorporated UCC-C4243 at rates more than 10 times greater than like treatments that killed all plants in the light. Soil-incorporated UCC-C4243 required light for activity and killed seedlings within 1 d after emergence; sublethal doses caused desiccation, veinal necrosis, and leaf deformation. Field pennycress and lentil were susceptible to soil-incorporated UCC-C4243 and acifluorfen in the light, but were 5 to 93 times less sensitive to the herbicides in the dark. Wheat was not affected by either herbicide in the light or dark. Injury symptoms from UCC-C4243 applied POST to redroot pigweed were similar to symptoms from diphenyl ether and bipyridinium herbicides: rapid, light-dependent chlorophyll bleaching, desiccation, and necrosis. UCC-C4243, acifluorfen-methyl, and acifluorfen acid caused light- and concentration-dependent chlorophyll bleaching and electrolyte leakage from cucumber leaf disks (I50 = 1.0, 1.8, and 4.3 μM, respectively). An inhibitor of the porphyrin synthesis pathway, 4,6-dioxoheptanoic acid, almost completely inhibited herbicide-induced electrolyte leakage. δ-Aminolevulinic acid, a tetrapyrrole precursor and stimulator of the porphyrin synthesis pathway, caused synergistic effects with each herbicide. Protoporphyrinogen oxidase from barley etioplast preparations was inhibited 50% by 40 nM UCC-C4243. Barley leaf sections treated with 100 μM UCC-C4243 accumulated protoporphyrin IX in vivo to levels > 75 times non-treated controls. These data indicate the light-requiring herbicide activity of UCC-C4243, like acifluorfen, is due to inhibition of protoporphyrinogen oxidase.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © 1995 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

1. Beale, S. I. and Weinstein, J. D. 1990. Tetrapyrrole metabolism in photosynthetic organisms. Pages 287391 in Dailey, H. A., ed. Biosynthesis of Hemes and Chlorophylls. McGraw-Hill, New York.Google Scholar
2. Becerril, J. M. and Duke, S. O. 1989. Acifluorfen effects on intermediates of chlorophyll synthesis in green cucumber cotyledon tissues. Pestic. Biochem. Physiol. 35:119126.Google Scholar
3. Becerril, J. M., Duke, M. V., Nandihalli, U. B., Matsumoto, H., and Duke, S. O. 1992. Light control of porphyrin accumulation in acifluorfen-methyl-treated Lemna pausicostata . Physiol. Plant. 86:616.Google Scholar
4. Becerril, J. M. and Duke, S. O. 1989. Protoporphyrin IX content correlates with activity of photobleaching herbicides. Plant Physiol. 90:11751181.Google Scholar
5. Bell, A. R., Walz, A. W., and Joy, D. N. 1991. Ecofallow and winter wheat weed control with UCC-C4243. Proc. Br. Crop Prot. Conf. 6C-3:807812.Google Scholar
6. Boerboom, C. M. 1991. Broadleaf weed control in dry peas and lentil. Res. Prog. Rep. West. Soc. Weed Sci. Pages 219220.Google Scholar
7. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248254.Google Scholar
8. Brewster, B. D., Appleby, A. P., and Kloft, D. L. 1990. Efficacy of preemergence herbicides in winter wheat. Res. Prog. Rep. West. Soc. Weed Sci. Pages 396397.Google Scholar
9. Camadro, J.-M., Matringe, M., Scalla, R., and Labbe, P. 1991. Kinetic studies on protoporphyrinogen oxidase inhibition by diphenyl ether herbicides. Biochem. J. 277:1721.CrossRefGoogle ScholarPubMed
10. Davis, E. S., Fay, P. K., and Walz, A. W. 1992. Weed control with UCC-C4243. Proc. West. Soc. Weed Sci. 45:99102.Google Scholar
11. Derrick, P. M., Cobb, A. H., and Pallett, K. E. 1988. Ultrastructural effects of the diphenyl ether herbicide acifluorfen and the experimental herbicide M&B 39279. Pestic. Biochem. Physiol. 32:153163.Google Scholar
12. Dial, M. J. and Thill, D. C. 1991. Broadleaf weed control in spring wheat with preemergence surface and postemergence herbicides. Res. Prog. Rep. West Soc. Weed Sci. Pages 246248.Google Scholar
13. Duke, S. O. and Kenyon, W. H. 1987. A non-metabolic model of acifluorfen activity. Z. Naturforsh. 42c:813818.Google Scholar
14. Duke, S. O., Lydon, J., and Paul, R. N. 1989. Oxadiazon activity is similar to that of p-nitro-diphenyl ether herbicides. Weed Sci. 37:152160.Google Scholar
15. Duke, S. O., Lydon, J., Becerril, J. M., Sherman, T. D., Lehnen, L. P. Jr., and Matsumoto, H. 1991. Protoporphyrinogen oxidase-inhibiting herbicides. Weed Sci. 39:465473.CrossRefGoogle Scholar
16. Fuerst, E. P. and Norman, M. N. 1991. Interaction of herbicides with photosynthetic electron transport. Weed Sci. 39:458464.Google Scholar
17. Jacobs, N. J. and Jacobs, J. M. 1982. Assay for enzymatic protoporphyrinogen oxidation, a late step in heme synthesis. Enzyme 28:206219.Google Scholar
18. Jacobs, J. M., Jacobs, N. J., Sherman, T. D., and Duke, S. O. 1991. Effect of diphenyl ether herbicides on oxidation of protoporphyrinogen to protoporphyrin in organellar and plasma membrane enriched fractions of barley. Plant Physiol. 97:197203.CrossRefGoogle ScholarPubMed
19. Joy, D. N. and Bell, A. R. 1992. Weed control in winter wheat, chemical fallow, and other crops with UCC-C4243. Proc. West. Soc. Weed Sci. 45:98.Google Scholar
20. Kenyon, W. H., Duke, S. O., and Vaughn, K. C. 1985. Sequence of effects of acifluorfen on physiological and ultrastructural parameters in cucumber cotyledon discs. Pestic. Biochem. Physiol. 24:240250.CrossRefGoogle Scholar
21. Lehnen, L. P. Jr., Sherman, T. D., Becerril, J. M., and Duke, S. O. 1990. Tissue and cellular localization of acifluorfen-induced porphyrins in cucumber cotyledons. Pestic. Biochem. Physiol. 37:239248.CrossRefGoogle Scholar
22. Lydon, J. and Duke, S. O. 1988. Porphyrin synthesis is required for photobleaching activity of the p-nitro substituted diphenyl ether herbicides. Pestic. Biochem. Physiol. 36:300307.Google Scholar
23. Matringe, M. and Scala, R. 1988. Effects of acifluorfen-methyl on cucumber cotyledons: porphyrin accumulation. Pestic. Biochem. Physiol. 40:128132.Google Scholar
24. Matsumoto, H. and Duke, S. O. 1990. Acifluorfen effects on porphyrin synthesis in Lemna pausicostata Hegelm. 6746. J. Agric. Food Chem. 38:20662071.Google Scholar
25. Miller, T. W. and Callihan, R. H. 1991. Evaluation of selected herbicides for use in lentils. Res. Prog. Rep. West. Soc. Weed Sci. Pages 213214.Google Scholar
26. Miller, T. W., Barstow, B. B., and Callihan, R. H. 1991. Evaluation of selected herbicides for use in dry peas. Res. Prog. Rep. West. Soc. Weed Sci. Pages 221223.Google Scholar
27. Mito, N., Sato, R., Minyakado, M., Oshio, H., and Tanaka, S. 1991. In vitro mode of action of N-phenylimide photobleaching herbicides. Pestic. Biochem. Physiol. 40:128132.Google Scholar
28. Motulsky, H. S. and Ransnas, L. A. 1987. Fitting curves to data using nonlinear regression: a practical and nonmathematical review. FASEB J. 1:365374.Google Scholar
29. Nandihalli, U. J., Duke, M. V., and Duke, S. O. 1992. Quantitative structure-activity relationships of protoporphyrinogen oxidase-inhibiting diphenyl ether herbicides. Pestic. Biochem. Physiol. 43:193211.Google Scholar
30. Nandihalli, U. B., Sherman, T. D., Duke, M. V., Fisher, J. D., Musco, V. A., Becerril, J. M., and Duke, S. O. 1992. Correlation of protoporphyrinogen oxidase-inhibition by O-phenylpyrrolidino-and piperidino-carbamates with their herbicidal effects. Pestic. Sci. 35:227235.Google Scholar
31. Rebeiz, C. A., Montazer-Zouhoor, A., Hopen, H. J., and Wu, S. M. 1984. Photodynamic herbicides: 1. Concept and phenomenology. Enzyme Microb. Technol. 5:390401.Google Scholar
32. SAS Institute Incorporated. 1990. NLIN Procedure. Page 11351194 in SAS Statistics User's Guide, vol. 2, version 6, 1st ed. SAS Inst. Inc., Cary, NC.Google Scholar
33. Sherman, T. D., Becerril, J. M., Matsumoto, H., Duke, M. V., Jacobs, J. M., Jacobs, N. J., and Duke, S. O. 1991. Physiological basis for differential sensitivities of plant species to protoporphyrinogen oxidase-inhibiting herbicides. Plant Physiol. 97:280287.CrossRefGoogle ScholarPubMed
34. Sherman, T. D., Duke, M. V., Clark, R. D., Saunders, E. F., Matsumoto, H., and Duke, S. O. 1991. Pyrazole phenyl ether herbicides inhibit protoporphyrinogen oxidase. Pestic. Biochem. Physiol. 40:236245.Google Scholar
35. Streibig, J. C., Rudenmo, M., and Jensen, J. E. 1993. Dose-response curves and statistical models. Pages 2955 in Streibig, J. C. and Kudsk, P., eds. Herbicide Bioassays. CRC Press, Boca Raton.Google Scholar
36. Teasdale, J. R. and Frank, J. R. 1983. Tolerance of peas (Pisum sativum) to acifluorfen applied preemergence. Weed Sci. 31:592596.Google Scholar
37. Vølund, A. 1978. Application of the four-parameter logistic model to bioassay: comparison with slope ration and parallel line models. Biometrics 34:357365.Google Scholar
38. Witkowski, D. A. and Hailing, B. P. 1988. Accumulation of photodynamic tetrapyrroles induced by acifluorfen-methyl. Plant Physiol. 87:632637.Google Scholar
39. Wright, T. R., Ogg, A. G. Jr., and Fuerst, E. P. Dissipation and water activation of UCC-C4243. Weed Sci. In press.Google Scholar