Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T02:11:24.184Z Has data issue: false hasContentIssue false

Growth and Seed Production of Horseweed (Conyza canadensis) Populations Resistant to Glyphosate, ALS-Inhibiting, and Multiple (Glyphosate + ALS-Inhibiting) Herbicides

Published online by Cambridge University Press:  20 January 2017

Vince M. Davis
Affiliation:
Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
Greg R. Kruger
Affiliation:
Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
Jeff M. Stachler
Affiliation:
Department of Horticulture and Crop Science, Ohio State University, Columbus, OH 43210
Mark M. Loux
Affiliation:
Department of Horticulture and Crop Science, Ohio State University, Columbus, OH 43210
William G. Johnson*
Affiliation:
Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
*
Corresponding author's E-mail: [email protected]

Abstract

Horseweed populations with mixtures of biotypes resistant to glyphosate and acetolactate synthase (ALS)–inhibiting herbicides as well as biotypes with multiple resistance to glyphosate + ALS-inhibiting herbicides have been documented in Indiana and Ohio. These biotypes are particularly problematic because ALS-inhibiting herbicides are commonly tank mixed with glyphosate to improve postemergence horseweed control in soybean. The objective of this research was to characterize the growth and seed production of horseweed populations with resistance to glyphosate or ALS-inhibiting herbicides, and multiple resistance to glyphosate + ALS-inhibiting herbicides. A four-herbicide by four-horseweed population factorial field experiment was conducted in the southeastern region of Indiana in 2007 and repeated in 2008. Four horseweed populations were collected from Indiana or Ohio and confirmed resistant to glyphosate, ALS inhibitors, both, or neither in greenhouse experiments. The four herbicide treatments were untreated, 0.84 kg ae ha−1 glyphosate, 35 g ai ha−1 cloransulam, and 0.84 kg ae ha−1 glyphosate + 35 g ai ha−1 cloransulam. Untreated plants from horseweed populations that were resistant to glyphosate, ALS-inhibiting, or multiple glyphosate + ALS-inhibiting herbicides produced similar amounts of biomass and seed compared to populations that were susceptible to those herbicides or combination of herbicides. Furthermore, aboveground shoot mass and seed production did not differ between treated and untreated plants.

Type
Weed Biology and Ecology
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Beckie, H. J. 2006. Herbicide-resistant weeds: management tactics and practices. Weed Technol. 20:793814.Google Scholar
Beckie, H. J., Heap, I. M., Smeda, R. J., and Hall, L. M. 2000. Screening for herbicide resistance in weeds. Weed Technol. 14:428445.Google Scholar
Bhowmik, P. C. and Bekech, M. M. 1993. Horseweed (Conyza canadensis) seed production, emergence and distribution in no-till and conventional-tillage corn (Zea mays). Agronomy (Trends Agric. Sci.) 1:6771.Google Scholar
Boerboom, C. M. 1999. Nonchemical options for delaying weed resistance to herbicides in Midwest cropping systems. Weed Technol. 13:636642.Google Scholar
Box, G. E. P., Hunter, W. G., and Hunter, J. S. 1978. Statistics for Experimenters: An Introduction to Design, Data Analysis, and Model Building. New York Wiley.Google Scholar
Bruce, J. A. and Kells, J. J. 1990. Horseweed (Conyza canadensis) control in no-till soybean (Glycine max) with preplant and preemergence herbicides. Weed Technol. 4:642–547.Google Scholar
Buhler, D. D. and Owen, M. D. K. 1997. Emergence and survival of horseweed (Conyza canadensis). Weed Sci. 45:98101.Google Scholar
Dauer, J. T., Mortensen, D. A., and Humston, R. 2006. Controlled experiments to predict horseweed (Conyza canadensis) dispersal distances. Weed Sci. 54:484489.Google Scholar
Davis, V. M., Gibson, K. D., and Johnson, W. G. 2008. A field survey to determine distribution and frequency of glyphosate-resistant horseweed (Conyza canadensis) in Indiana. Weed Technol. 22:331338.Google Scholar
Davis, V. M. and Johnson, W. G. 2008. Glyphosate-resistant horseweed (Conyza canadensis) emergence, survival, and fecundity in no-till soybean. Weed Sci. 56:231236.Google Scholar
DeGennaro, F. P. and Weller, S. C. 1984. Differential susceptibility of field bindweed (Convolvulus arvensis) biotypes to glyphosate. Weed Sci. 32:472476.Google Scholar
Franz, J. E. 1985. Discovery, development and chemistry of glyphosate. Pages 37. In Grossbard, E. and Atkinson, D. The Herbicide Glyphosate. London. Butterwork and Company.Google Scholar
Gibson, K. D., Johnson, W. G., and Hillger, D. E. 2005. Farmer perceptions of problematic corn and soybean weeds in Indiana. Weed Technol. 19:10651070.Google Scholar
Gleason, H. A. and Croquist, A. 1991. Manual of Vascular Plants of Northeastern United States and Adjacent Canada. Bronx, NY New York Botanical Garden. 592.Google Scholar
Green, J. M. 2007. Review of glyphosate and ALS-inhibiting herbicide crop resistance and resistant weed management. Weed Technol. 21:547558.Google Scholar
Heap, I. M. 2008. International Survey of Herbicide Resistant Weeds. http://www.weedscience.com. Accessed: November 2008.Google Scholar
Johnson, B., Barnes, J., Gibson, K., and Weller, S. 2004. Late-season weed escapes in Indiana soybean fields. Crop Manag. DOI: 10.1094/CM-2004-0923-01-BR. http://www.plantmanagementnetwork.org. Accessed: November 2008.Google Scholar
Knezevic, S. Z. and Cassman, K. G. 2003. Use of herbicide-tolerant crops as a component of an integrated weed management program. Crop Manag. DOI: 10.1094/CM-2003-0317-01-MG.Google Scholar
Kruger, G. R., Davis, V. M., Johnson, W. G., and Weller, S. C. 2008. Response of selected Indiana horseweed (Conyza canadensis) populations to glyphosate and cloransulam. Proc. N. Cent. Weed Sci. Soc. 63:124.Google Scholar
Littell, R. C., Milliken, G. A., Stroup, W. W., Wolfinger, R. D., and Schabenberger, O. 2006. SAS for Mixed Models. 2nd ed. Cary, NC SAS Institute.Google Scholar
Loux, M., Stachler, J., Johnson, B., Nice, G., Davis, V., and Nordby, D. 2006. Biology and Management of Horseweed. In The Glyphosate, Weeds, and Crop Series. GWC-9. http://www.ces.purdue.edu/extmedia/GWC/GWC-9-W.pdf. Accessed: March 2008.Google Scholar
Massinga, R. A., Al-Khatib, K., Amand, P. S., and Miller, J. F. 2005. Relative fitness of imazamox-resistant common sunflower and prairie sunflower. Weed Sci. 53:166174.Google Scholar
Maxwell, B. D., Roush, M. L., and Radosevich, S. R. 1990. Predicting the evolution and dynamics of herbicide resistance in weed populations. Weed Technol. 4:213.Google Scholar
Moseley, C. M. and Hagood, E. S. Jr. 1990. Horseweed (Conyza canadensis) control in full-season no-till soybeans (Glycine max). Weed Technol. 4:814818.Google Scholar
Neve, P. 2007. Challenges for herbicide resistance evolution and management: 50 years after Harper. Weed Res. 47:365369.Google Scholar
Norsworthy, J. K., Scott, R. C., Smith, K. L., and Oliver, L. R. 2008. Response of northeastern Arkansas Palmer amaranth (Amaranthus palmeri) accessions to glyphosate. Weed Technol. 22:408413.Google Scholar
Owen, M. D. K. and Zelaya, I. A. 2005. Herbicide-resistant crops and weed resistance to herbicides. Pest Manag. Sci. 61:301311.Google Scholar
Park, K. W., Mallory-Smith, C. A., Ball, D. A., and Mueller-Warrant, G. W. 2004. Ecological fitness of acetolactate synthase inhibitor-resistant and -susceptible downy brome (Bromus tectorum) biotypes. Weed Sci. 52:768773.Google Scholar
Powles, S. B. 2008. Evolved glyphosate-resistant weeds around the world: lessons to be learnt. Pest Manag. Sci. 64:360365.Google Scholar
Radford, P. J. 1967. Growth analysis formulae—their use and abuse. Crop Sci. 7:171175.Google Scholar
Regehr, D. L. and Bazzaz, F. A. 1979. The population dynamics of Erigeron canadensis, a successional winter annual. J. Ecol. 67:923933.Google Scholar
Roush, M. L., Radosevich, S. R., and Maxwell, B. D. 1990. Future outlook for herbicide-resistance research. Weed Technol. 4:208214.Google Scholar
Sammons, R. D., Heering, D. C., Dinicola, N., Glick, H., and Elmore, G. A. 2007. Sustainability and stewardship of glyphosate and glyphosate-resistant crops. Weed Technol. 21:347354.Google Scholar
Saxton, A. M. 1998. A macro for converting mean separation output to letter groupings in Proc Mixed. Pages 12431246. in. Proceedings of the 23rd SAS Users Group International. Cary, NC SAS Institute.Google Scholar
Shields, E. J., Dauer, J. T., VanGessel, M. J., and Neumann, G. 2006. Horseweed (Conyza canadensis) seed collected in the planetary boundary layer. Weed Sci. 54:10631067.Google Scholar
Smisek, A. 1995. Resistance to paraquat in Erigeron canadensis L. . Ontario University of Western Ontario.Google Scholar
Smith, D. A. and Hallett, S. 2006. Variable response of common waterhemp (Amaranthus rudis) populations and individuals to glyphosate. Weed Technol. 20:466471.Google Scholar
Thébaud, C. and Abbott, R. J. 1995. Characterization of invasive Conyza species (Asteraceae) in Europe: quantitative trait and isozyme analysis. Am. J. Bot. 82:360368.Google Scholar
Trainer, G. D., Loux, M. M., Harrison, S. K., and Regnier, E. 2005. Response of horseweed biotypes to foliar applications of cloransulam-methyl and glyphosate. Weed Technol. 19:231236.Google Scholar
Tranel, P. J. and Wright, T. R. 2002. Resistance of weeds to ALS-inhibiting herbicides: what have we learned? Weed Sci. 50:700712.Google Scholar
[USDA–NASS] U.S. Department of Agriculture–National Agricultural Statistics Service 2008. Agricultural Chemical Use Database. www.pestmanagement.info/nass. Accessed: November 2008.Google Scholar
VanGessel, M. J. 2001. Glyphosate-resistant horseweed in Delaware. Weed Sci. 49:703705.Google Scholar
VanGessel, M. J., Ayeni, A. O., and Majek, B. A. 2001. Glyphosate in full season no-till glyphosate-resistant soybean: role of preplant applications and residual herbicides. Weed Technol. 15:714724.Google Scholar
Weaver, S. E. 2001. The biology of Canadian weeds. 115. Conyza canadensis . Can. J. Plant Sci. 81:867875.Google Scholar
Westhoven, A. M., Kruger, G. R., Gerber, C. K., Stachler, J. M., Loux, M. M., and Johnson, W. G. 2008. Characterization of selected common lambsquarters (Chenopodium album) biotypes with tolerance to glyphosate. Weed Sci. 56:685691.Google Scholar
Williams, M. M., Jordan, N., and Yerkes, C. 1995. The fitness cost of atrazine resistance in jimsonweed (Datura stramonium L.). Am. Midl. Nat. 133:131137.Google Scholar
Zelaya, I. A., Owen, M. D. K., and VanGessel, M. J. 2004. Inheritance of evolved glyphosate resistance in Conyza canadensis (L.) Cronq. Theor. Appl. Genet. 110:5870.Google Scholar
Zhang, J., Salas, M. L., Jordan, N. R., and Weller, S. C. 1999. Biorational approaches to managing Datura stamonium . Weed Sci. 47:750756.Google Scholar
Zheng, D., Tranel, P. J., Davis, V. M., Kruger, G. R., and Johnson, W. G. 2007. Target-site resistance to ALS inhibitors in horseweed. Proc. N. Cent. Weed Sci. Soc. 62:34.Google Scholar