Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T06:18:49.019Z Has data issue: false hasContentIssue false

Esterase Polymorphism for Analysis of Genetic Diversity and Structure of Wild Poinsettia (Euphorbia heterophylla) Populations

Published online by Cambridge University Press:  20 January 2017

Mariléia J. Frigo
Affiliation:
Department of Cell Biology and Genetics, State University of Maringá, 87020-900 Maringá, Paraná, Brazil
Claudete A. Mangolin
Affiliation:
Department of Cell Biology and Genetics, State University of Maringá, 87020-900 Maringá, Paraná, Brazil
Rubem S. Oliveira Jr.
Affiliation:
Department of Agronomy, State University of Maringá, 87020-900 Maringá, Paraná, Brazil
Maria de Fátima P. S. Machado
Affiliation:
Department of Cell Biology and Genetics, State University of Maringá, 87020-900 Maringá, Paraná, Brazil

Abstract

Native polyacrylamide gel electrophoresis was used in the current study to identify polymorphism in α- and β-esterase loci in leaf tissues of wild poinsettia plants for the analysis of genetic diversity and structure of populations. Seeds were collected from different plants in 12 different populations. Two to three allelic variants were at Est-1, Est-2, Est-3, Est-4, Est-5, Est-6, and Est-7 loci. The estimated proportion of polymorphic loci in populations is 87.5%. High and low values of observed and expected proportion of heterozygous loci in 12 populations confirm our suspicion that the populations are genetically structured (FST = 0.1663). The heterozygous deficiencies are evidenced by the positive value of FIS (0.1248). The positive FIS value indicates a deficit of heterozygous (12.48%) or an excess of homozygous plants, which could be the result of frequent herbicide application in areas where seeds were collected and/or the result of self-pollination. Overall inbreeding or nonrandom breeding, according to the significant FIT value (0.2703), did play a major role in shaping the genetic structure of these populations. Identity values represented in the dendrogram should play a more central role in developing policies to manage and control this species.

Type
Weed Biology and Ecology
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Al Samman, N., Martin, A., and Puech, S. 2001. Inflorescence architecture variability and its possible relationship to environment or age in a Mediterranean species, Euphorbia nicaeensis All. (Euphorbiaceae). Bot. J. Linn. Soc. 136:99105.Google Scholar
Allendorf, F. W. and Luikart, G. 2007. Conservation and the Genetics of Populations. Maden, MA Blackwell Publishing. 642.Google Scholar
Carvalho, V. M., Marques, R. M., Lapenta, A. S., and Machado, M. F. P. S. 2003. Functional classification of esterases from leaves of Aspidosperma polyneuron M. Arg. (Apocynaceae). Genet. Mol. Biol. 26:195198.Google Scholar
Cerdeira, A. L., Gazziero, D. L. P., Duke, S. O., Matallo, M. B., and Spadotto, C. A. 2007. Review of potential environmental impacts of transgenic glyphosate-resistant soybean in Brazil. J. Environ. Sci. Health Part B Pestic. Food Contam. Agric. Wastes. 42:539549.Google Scholar
Ceron, C. R. 1988. Padrão de Esterases no Desenvolvimento de Drosophila mulleri, D. arizonensis e Seus Híbridos. . São Paulo, Brazil Instituto de Biociências, Universidade de São Paulo. 142.Google Scholar
Ceron, C. R., Santos, J. R., and Campos Bicudo, H. E. M. 1992. The use of gelatin to dry cellophane wound slab gels in an embroidering hoop. Brazil J. Genet. 15:201203.Google Scholar
Gómez, C. and Espadaler, X. 1998. Seed dispersal curve of a Mediterranean myrmecochore: influence of ant size and the distance to nests. Ecol. Res. 13:347352.Google Scholar
Hamrick, J. L., Linhart, Y. B., and Mitton, J. B. 1979. Relationship between life history characteristics and electrophoretically-detectable genetic variation in plants. Ann. Rev. Ecol. Syst. 10:173200.CrossRefGoogle Scholar
Holt, J. S. and LeBaron, H. M. 1990. Significance and distribution of herbicide resistance. Weed Technol. 4:141149.Google Scholar
Johnson, F. M., Kanapi, C. G., Richardson, R. H., Wheeler, M. R., and Stone, W. S. 1966. An operational classification of Drosophila esterases for species comparison. Univ. Tex. Publ. 6615:517532.Google Scholar
Lapenta, A. S., Campos Bicudo, H. E. M., Ceron, C. R., and Cordeiro, J. A. 1995. Esterase patterns of species in the Drosophila buzzatii cluster. Cytobios. 84:1329.Google Scholar
Lorenzi, H. J. 2000. Plantas Daninhas do Brasil: Terrestres, Aquáticas, Parasitas, Tóxicas e Medicinais. São Paulo, Brazil Nova Odessa. 608.Google Scholar
Narbona, E., Arista, M., and Ortiz, P. L. 2005. Explosive seed dispersal in two perennial mediterranean Euphorbia species (Euphorbiaceae). Am. J. Bot. 92:510516.Google Scholar
Nechet, K. L., Barreto, R. W., and Mizubuti, E. S. G. 2006. Bipolaris euphorbiae as a biological control agent for wild poinsettia (Euphorbia heterophylla): host-specificity and variability in pathogen and host populations. BioControl (Dordr.) 51:259275.CrossRefGoogle Scholar
Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA. 70:33213323.CrossRefGoogle ScholarPubMed
Oakeshott, J. G., Van Papenrecht, E. A., Boyce, T. M., Healy, M. J., and Russell, R. J. 1993. Evolutionary genetics of Drosophila esterases . Genetica. 90:239268.Google Scholar
Orasmo, G. R., Oliveira-Collet, S. A., Lapenta, A. S., and Machado, M. F. P. S. 2007. Biochemical and genetic polymorphism for carboxylesterase and acetylesterase in grapes clones of Vitis vinifera L. (Vitaceae) cultivars. Biochem. Genet. 9/10:663670.Google Scholar
Park, K. R. 2004. Comparisons of allozyme variation of narrow endemic and widespread species of Far East Euphorbia (Euphorbiaceae). Bot. Bull. Acad. Sin. (Taipei) 45:221228.Google Scholar
Park, K. R. and Elisens, W. J. 1997. Isozyme and morphological evidence within Euphorbia section Tithymalopsis (Euphorbiaceae). Int. J. Plant Sci. 158:465475.Google Scholar
Park, K. R., Jung, H., Ahn, B., Lee, K., and Kim, J. 1999. Genetic and morphological divergence in Korean Euphorbia ebracteolata (Euphorbiaceae). Korean J. Plant Taxon. 29:249262.Google Scholar
Pereira, A. J., Vidigal-Filho, P. S., Lapenta, A. S., and Machado, M. F. P. S. 2001. Differential esterase expression in leaves of Manihot esculenta, Crantz infected with Xanthomonas axonopodis pv. manihotis. Biochem. Genet. 39:289296.Google Scholar
Robin, C., Russell, R. J., Nedveczky, K. M., and Oakeshott, J. 1996. Duplication and divergence of the genes of the alpha-esterase cluster of Drosophila melanogaster . J. Mol. Evol. 43:241252.Google Scholar
Steiner, W. W. M. and Johnson, W. E. 1973. 121. Techniques for Eletrophoresis of Haeaiian Drosophila. U.S. International Biological Program Island Ecosystems IRP. Tech. Rep. 30.Google Scholar
Trezzi, M. M., Felippi, C. L., Mattei, D., Silva, H. L., Nunes, A. L., Debastiani, C., Vidal, R. A., and Marques, A. 2005. Multiple resistance of acetolactate synthase and protoporphyrinogen oxidase inhibitors in Euphorbia heterophylla biotypes. J. Env. Sci. Health Part B Pest. Food Contam. Agric. Wastes. 40:101109.Google Scholar
Vasconcelos, M. J. V., Abdelnoor, R. V., Karan, D., Almeida, A. M. R., Oliveira, M. F., Barros, E. G., and Moreira, M. A. 2000. Variabilidade genética em biótipos de leiteiro de Londrina, PR. Planta Daninha. 18:285291.Google Scholar
Vila-Aiub, M. M., Vidal, R. A., Balbi, M. C., Gundel, P. E., Trucco, F., and Ghersa, C. M. 2007. Glyphosate-resistant weeds of South American cropping systems: an overview. Pest Manag. Sci. 28:2027.Google Scholar
Winkler, L. M., Vidal, R. A., and Neto, J. F. B. 2003. Caracterização genética de Euphorbia heterophylla resistente a herbicidas inibidores da acetolactato sintase. Pesqu. Agropecu. Bras. 38:10671072.Google Scholar
Wright, S. 1965. The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution. 19:395399.Google Scholar
Wright, S. 1978. Variability within and among populations. in Wright, S. ed. Evolution and the Genetics of Populations. Chicago University of Chicago Press. 580.Google Scholar
Yeh, F. C., Yang, R., and Boyle, T. 1999. POPGENE Version 1.31: Microsoft Windows based freeware for population genetic analysis. Edmonton, Canada University of Alberta, Center for International Forestry Research.Google Scholar