Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T03:38:14.021Z Has data issue: false hasContentIssue false

Effect of Low Temperature on Purple Nutsedge (Cyperus rotundus) Reproductive Biology

Published online by Cambridge University Press:  20 January 2017

Evgenia Dor*
Affiliation:
Department of Weed Research, Newe Ya'ar Research Center, Agricultural Research Organization, P. O. Box 1021, Ramat Yishay 30095, Israel
Joseph Hershenhorn
Affiliation:
Department of Weed Research, Newe Ya'ar Research Center, Agricultural Research Organization, P. O. Box 1021, Ramat Yishay 30095, Israel
*
Corresponding author's E-mail: [email protected]

Abstract

Purple nutsedge is considered to be the worst weed in the tropical and subtropical regions of the world. Although the plant is a low grower it has very strong competitive abilities. The influence of initial tuber size and cold treatment on tuber sprouting, accumulation of plant biomass and new tubers formation was studied. Tubers sprouted continuously over 30 to 50 d with significantly lower sprouting ability of small tubers (0.1 to 0.2 g). Short cold treatment (4 C for 4 d) significantly stimulated sprouting process. The early sprouting of cold treated tubers led to increased number of shoots and inflorescences and therefore more intensive biomass accumulation, as well as more intensive formation of new tubers. The increase in total biomass accumulation raises the reproductive and spreading potential of the weed.

Type
Weed Biology and Ecology
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bendixen, L. E. and Nandihalli, V. B. 1987. Worldwide distribution of purple and yellow nutsedge (Cyperus rotundus and C. esculentus). Weed Technol. 1: 6165.Google Scholar
Bryson, C. T., Hanks, J. E., and Wills, G. D. 1994. Purple nutsedge (Cyperus rotundus) control in reduced-tillage cotton (Gossypium hirsutum L.) with low-volume technology. Weed Technol. 8: 2831.Google Scholar
Dodet, M., Navas, M. L., and Gazquez, D. J. 2008. Effect of date of emergence on the growth of the clonal perennial Cyperus esculentus in the Haute Lande, south-western France. Weed Res. 48: 370377.Google Scholar
Dorado, J., Sousa, E., Calha, I. M., Gonzalez-Andujar, J. L., and Fernandez-Quintanilla, C. 2009. Predicting weed emergence in maize crops under two contrasting climatic conditions. Weed Res. 49: 251260.Google Scholar
Gilreath, J. P. and Santos, B. M. 2004. Herbicide dose and incorporation depth in combination with 1,3-dichloropropene plus chloropicrin for Cyperus rotundus control in tomato and pepper. Crop Prot. 23: 205210.Google Scholar
Glaze, N. C. 1987. Cultural and mechanical manipulation of Cyperus spp. Weed Technol. 1: 8283.Google Scholar
Grichar, W. and Sestak, D. C. 2000. Effect of adjuvants on control of nutsedge (Cyperus esculentus and C. rotundus) by imazapic and imazethapyr. Crop Prot. 19: 461465.Google Scholar
Gupta, V. P., Kunar, V., Mishra, R. K., Thiagarajan, V., and Datta, R. K. 2002. Puccinia romagnoliana Marie & Sacc.—a potential bioherbicide agent for biocontrol of purple nutsedge (Cyperus rotundus L.) in Mulberry. Phytopathology 150: 263270.Google Scholar
Horowitz, M. 1965. Data on the biology and chemical control of the nutsedge (Cyperus rotundus) in Israel. Int. J. Pest Manag. Part C 11: 389414.Google Scholar
Horowitz, M. 1972. Growth, tuber formation and spread of Cyperus rotundus L. from single tubers. Weed Res. 12: 348363.Google Scholar
Inglis, P. W., Teixeira, E. A., Ribeiro, D. M., Valadares-Inglis, M. C., Tigano, M. S., and Melo, S.C.M. 2001. Molecular markers for the characterization of Brazilian Cercospora caricis isolates. Curr. Microbiol. 42: 194198.Google Scholar
Justice, O. L. and Whitehead, M. D. 1946. Seed production, viability and dormancy in the nutgrass, Cyperus rotundus and C. esculentus . J. Agric. Res. 73: 303318.Google Scholar
Kadir, J. and Charudattan, R. 2000. Dactylaria higginsii, a fungal bioherbicide agent for purple nutsedge (Cyperus rotundus). Biol. Contr. 17: 113124.Google Scholar
Kamabata, O. and Nishimoto, R. K. 2003. Temperature and rhizome chain effect on sprouting of purple nutsedge (Cyperus rotundus) ecotypes. Weed Sci. 51: 348355.Google Scholar
Lati, R. N., Filin, S., and Eizenberg, H. 2011. Temperature- and radiation-based models for predicting spatial growth of purple nutsedge (Cyperus rotundus). Weed Sci. 59: 476482.Google Scholar
Nishimoto, R. K. 2001. Purple nutsedge tuber sprouting. Weed Biol. Manag. 1: 203208.Google Scholar
Okoli, C.A.N., Shilling, D. G., Smith, R. L., and Bewick, T. A. 1996. Genetic diversity in purple nutsedge (Cyperus rotundus L.) and yellow nutsedge (Cyperus esculentus L.). Biol. Contr. 8: 111118.Google Scholar
Pena-Fronteras, J. T., Villalobos, M. C., Baltazar, A. M., Merca, F. E., Ismail, A. M., and Johnson, D. E. 2009. Adaptation to flooding in upland and lowland ecotypes of Cyperus rotundus, a troublesome sedge weed of rice: tuber morphology and carbohydrate metabolism. Ann. Bot. 103: 295302.Google Scholar
Santos, B. M., Morales-Payan, J. P., Stall, W. M., and Bewick, T. A. 1997a. Influence of tuber size and shoot removal on purple nutsedge (Cyperus rotundus) regrowth. Weed Sci. 45: 681683.Google Scholar
Santos, B. M., Morales-Payan, J. P., Stall, W. M., Bewick, T. A., and Shilling, D. G. 1997b. Effects of shading on the growth of purple nutsedges (Cyperus spp.). Weed Sci. 45: 670673.Google Scholar
Stoller, E. W. 1973. Effect of minimum soil temperature on differential distribution of Cyperus rotundus and C. esculentus in the United States. Weed Res. 13: 209217.Google Scholar
Sun, W. H. and Nishimoto, R. K. 1999. Thermoperiodicity in shoot elongation of purple nutsedge. J. Am. Hort. Sci. 124: 140144.Google Scholar
Travlos, I. S., Economou, G., Kotoulas, V. E., Kanatas, P. J., Kontogeorgos, A. N., and Karamanos, A. I. 2009. Potential effects of diurnally alternating temperatures and solarization on purple nutsedge (Cyperus rotundus) tuber sprouting. J. Arid Environ. 73: 2225.Google Scholar
Webster, T. M. 2003. High temperatures and durations of exposure reduce nutsedge (Cyperus spp.) tuber viability. Weed Sci. 51: 10101015.Google Scholar
Wilcut, J. W., York, A. C., and Wehtje, G. R. 1993. The control and interaction of weeds in peanut (Arachis hypogaea). Rev. Weed Sci. 6: 177206.Google Scholar
Williams, R. D. 1982. Growth and reproduction of Cyperus esculentus L. and Cyperus rotundus L. Weed Res. 22: 149154.Google Scholar
Wills, G. D. 1987. Description of purple and yellow nutsedge (Cyperus rotundus and C. esculentus). Weed Technol. 1: 29.Google Scholar
Wills, G. D. and Briscoe, G. A. 1970. Anatomy of purple nutsedge. Weed Sci. 18: 631635.Google Scholar
Zhang, Y. J., Xie, Z. K., Wang, Y. J., and An, L. P. 2011. Changes in carbohydrate metabolism and bulb growth as induced by low-temperature release of dormancy in lily bulbs. Philipp. Agric. Sci. 94: 149154.Google Scholar