Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
PEÑA‐BARRAGÁN, J M
LÓPEZ‐GRANADOS, F
JURADO‐EXPÓSITO, M
and
GARCÍA‐TORRES, L
2006.
Spectral discrimination of Ridolfia segetum and sunflower as affected by phenological stage.
Weed Research,
Vol. 46,
Issue. 1,
p.
10.
López-Granados, Francisca
Jurado-Expósito, Montse
Peña-Barragán, Jose M.
and
García-Torres, Luis
2006.
Using remote sensing for identification of late-season grass weed patches in wheat.
Weed Science,
Vol. 54,
Issue. 02,
p.
346.
Gómez-Casero, M. Teresa
López-Granados, Francisca
Peña-Barragán, José M.
Jurado-Expósito, Montserrat
García-Torres, Luis
and
Fernández-Escobar, Ricardo
2007.
Assessing Nitrogen and Potassium Deficiencies in Olive Orchards through Discriminant Analysis of Hyperspectral Data.
Journal of the American Society for Horticultural Science,
Vol. 132,
Issue. 5,
p.
611.
Munyati, C.
and
Makgale, D.
2009.
Multitemporal Landsat TM imagery analysis for mapping and quantifying degraded rangeland in the Bahurutshe communal grazing lands, South Africa.
International Journal of Remote Sensing,
Vol. 30,
Issue. 14,
p.
3649.
Gray, Cody J.
Shaw, David R.
and
Bruce, Lori M.
2009.
Utility of Hyperspectral Reflectance for Differentiating Soybean (Glycine max) and Six Weed Species.
Weed Technology,
Vol. 23,
Issue. 1,
p.
108.
Pyšek, Petr
and
Richardson, David M.
2010.
Invasive Species, Environmental Change and Management, and Health.
Annual Review of Environment and Resources,
Vol. 35,
Issue. 1,
p.
25.
Gómez-Casero, M. T.
Castillejo-González, I. L.
García-Ferrer, A.
Peña-Barragán, J. M.
Jurado-Expósito, M.
García-Torres, L.
and
López-Granados, F.
2010.
Spectral discrimination of wild oat and canary grass in wheat fields for less herbicide application.
Agronomy for Sustainable Development,
Vol. 30,
Issue. 3,
p.
689.
Martín, M.P.
Barreto, L.
and
Fernández-Quintanilla, C.
2011.
Discrimination of sterile oat (Avena sterilis) in winter barley (Hordeum vulgare) using QuickBird satellite images.
Crop Protection,
Vol. 30,
Issue. 10,
p.
1363.
Breunig, Fábio M.
2011.
Classification of soybean varieties using different techniques: case study with Hyperion and sensor spectral resolution simulations.
Journal of Applied Remote Sensing,
Vol. 5,
Issue. 1,
p.
053533.
Reshi, Zafar A.
and
Khuroo, Anzar A.
2012.
Alien Plant Invasions in India: Current Status and Management Challenges.
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences,
de Castro, Ana-Isabel
Jurado-Expósito, Montserrat
Gómez-Casero, María-Teresa
and
López-Granados, Francisca
2012.
Applying Neural Networks to Hyperspectral and Multispectral Field Data for Discrimination of Cruciferous Weeds in Winter Crops.
The Scientific World Journal,
Vol. 2012,
Issue. ,
p.
1.
S. Fletcher, Reginald
N. Reddy, Krishna
and
B. Turley, Rickie
2016.
Spectral Discrimination of Two Pigweeds from Cotton with Different Leaf Colors.
American Journal of Plant Sciences,
Vol. 07,
Issue. 15,
p.
2138.
Fletcher, Reginald S.
and
Turley, Rickie B.
2017.
Employing Canopy Hyperspectral Narrowband Data and Random Forest Algorithm to Differentiate Palmer Amaranth from Colored Cotton.
American Journal of Plant Sciences,
Vol. 08,
Issue. 12,
p.
3258.
Bolch, Erik A.
Santos, Maria J.
Ade, Christiana
Khanna, Shruti
Basinger, Nicholas T.
Reader, Martin O.
and
Hestir, Erin L.
2020.
Remote Sensing of Plant Biodiversity.
p.
267.
Yu, Huan
Kong, Bo
Hou, Yuting
Xu, Xiaoyu
Chen, Tao
and
Liu, Xiangmeng
2022.
A critical review on applications of hyperspectral remote sensing in crop monitoring.
Experimental Agriculture,
Vol. 58,
Issue. ,
Basinger, Nicholas T.
Hestir, Erin L.
Jennings, Katherine M.
Monks, David W.
Everman, Wesley J.
and
Jordan, David L.
2022.
Detection of Palmer amaranth (Amaranthus palmeri) and large crabgrass (Digitaria sanguinalis) with in situ hyperspectral remote sensing. I. Effects of weed density and soybean presence.
Weed Science,
Vol. 70,
Issue. 2,
p.
198.
Mishra, Reema
Soni, Renu
Singh, Garvita
Kaur, Pritam
and
Agarwal, Preeti
2023.
Plant Invasions and Global Climate Change.
p.
199.