Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-09T15:25:33.063Z Has data issue: false hasContentIssue false

Defining management rules for grasslands using weed demographic characteristics

Published online by Cambridge University Press:  20 January 2017

Michel Duru
Affiliation:
Département Environnement et Agronomie, Institut National de la Recherche Agronomique, Unité d'Agronomie, B.P. 27, 31326 Castanet-tolosan, France
Jean-Pierre Theau
Affiliation:
Département Systèmes Agraires et Développement, Institut National de la Recherche Agronomique, Unité d'Agronomie, B.P. 27, 31326 Castanet-tolosan, France

Abstract

The study objective was to use demographic information to adjust forage production practices to control the invasive weeds golden chervil and yellow-rattle without herbicides by defining the population dynamics traits that are directly involved in weed responses to farming practices. The principal population traits are capacity for dominance, sensitivity and accessibility of targeted developmental stages, and variation in weed population reactions from year to year. On the basis of demographic surveys of these two weed species when subjected experimentally to various cutting regimes (by date and number), we used matrix simulation models to describe each weed in terms of these traits and to construct species-specific management strategies. Management strategies for golden chervil need to prevent new recruitment by focusing on limiting or eliminating seed production and seedling survival because adult mortality is insensitive to cutting. Grazing to a low residual height is proposed in spring, when seedling emergence is maximal, or when adults reach their apex height to prevent the development of reproductive stems. Cutting before flowering may also efficiently limit seed production. The annual life cycle of yellow-rattle allows more flexibility in its management, even when density fluctuates and is unpredictable. If cutting is scheduled to coincide with peak juvenile height, this can drastically reduce population density the next year, and the population can be eradicated within 3 yr.

Type
Weed Biology and Ecology
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Auld, B. and Tisdell, C. A. 1986. Impact assessment of biological invasions. Pages 7988 in Groves, R. H. and Burdon, J. J. eds. Ecology of Biological Invasions. Cambridge: University Press Cambridge.Google Scholar
Bakker, J. P. 1987. Restoration of species-rich grasslands after a period of fertilizer application. Pages 187200 in Van Andel, J., Bakker, J. P., and Snaydon, R. W. eds. Disturbances in Grasslands. Geobotany Volume 10. Dordrecht: Dr W. Junk Publishers.Google Scholar
Bakker, J. P., Dekker, M., and De Vries, Y. 1980. The effect of different management practices on a grassland community and the resulting fate of seedlings. Acta Bot. Neerl 29:469482.CrossRefGoogle Scholar
Balent, G. 1991. Construction of a reference frame for studying changes in species composition in pastures: the example of an old-field succession. Options Méditerranéennes 15:7381.Google Scholar
Bastrenta, B., Lebreton, J. D., and Thompson, J. D. 1995. Predicting demographic change in response to herbivory: a model of the effects of grazing and annual variation on the population dynamics of Anthyllis vulneraria . J. Ecol 83:603611.CrossRefGoogle Scholar
Caswell, H. 2000. Matrix Population Models. 2nd ed. Sunderland, MA: Sinauer Associates.Google Scholar
Davies, D. M. and Graves, J. D. 1998. Interactions between arbuscular mycorrhizal fungi and the hemi parasitic angiosperm Rhinanthus minor during co-infection of a host. New Phytol 139:555563.CrossRefGoogle Scholar
Davies, D. M., Graves, J. D., Elias, C. O., and Williams, P. J. 1997. The impact of Rhinanthus minor spp. on sward productivity and composition: implications for the restoration of species-rich grasslands. Biol. Conserv 82/1:8793.CrossRefGoogle Scholar
De Hullu, E., Brouwer, T., and Ter Borg, S. J. 1985. Analysis of the demography of Rhinanthus angustifolius populations. Acta Bot. Neerl 34:522.Google Scholar
Duru, M., Balent, G., Gibon, A., Magda, D., Theau, J. P., Cruz, P., and Jouany, C. 1998. Fonctionnement et dynamique des prairies permanentes. Exemple des Pyrenées centrales. Fourrages 53:97113.Google Scholar
Franco, M. and Silvertown, J. 1996. Life history variations in plants: an explanation of the fast-slow continuum hypothesis. Philos. Trans. R. Soc. Lond. B Biol. Sci 351:13411348.Google Scholar
Gibson, C. C. and Watkinson, A. R. 1992. The role of the hemiparasitic annual Rhinanthus minor in determining grassland community structure. Oecologia 89:6268.CrossRefGoogle ScholarPubMed
Gillet, M. 1980. Les graminées fourragères. Paris, France: Gauthier-Villars. 306 p.Google Scholar
Gonnet, J. F. 1989. Apport de la Biologie Micromoléculaire (flavonoides) à la compréhension de la structure et du fonctionnement de l'espèce allogame Centaurea montana (Composées) et de l'espèce autogame Golden chervil (Ombellifères) au sein de deux groupements végétaux subalpins: prairie et megaphorbiaie. . Université Claude Bernard-Lyon I. 266 p.Google Scholar
Grime, J. P. 1981. The role of seed dormancy in vegetation dynamics. Ann. Appl. Biol 98:555558.Google Scholar
Grime, J. P., Hodgson, J. G., and Hunt, R. eds. 1988. Comparative Plant Ecology. London: Unwin Hyman. 742 p.Google Scholar
Harper, J. L., Silvertown, J., and Franco, M. 1996. Plant life histories: ecological correlates and phylogenetic constraints. Philos. Trans. R. Soc. Lond. B Biol. Sci 351:12271231.Google Scholar
Hobbs, R. J. 1991. Disturbance as a precursor to weed invasion in native vegetation. Plant Prot. Q 6:99104.Google Scholar
Hobbs, R. J. and Huenneke, L. F. 1992. Disturbance, diversity and invasion: implications for conservation. Conserv. Biol 6:324337.CrossRefGoogle Scholar
Hobbs, R. J. and Humphries, S. E. 1995. An integrated approach to the ecology and management of plant invasions. Conserv. Biol 9:761770.Google Scholar
Legendre, S. and Clobert, J. 1995. ULM, a software for conservation and evolutionary biologists. J. Appl. Stat 22/5:817834.Google Scholar
Lonsdale, W. 1993. Rates of spread of an invading species—Mimosa pigra in northern Australia. J. Ecol 81:513521.CrossRefGoogle Scholar
Mack, R. N. 1985. Invading plants: their potential contribution to population biology. Pages 127142 in White, J. ed. Studies in Plant Demography: A Festschrift for John L. Harper. London: Academic Press.Google Scholar
Magda, D. 1998. Effects of extensification on invasive populations of Chaerophyllum aureum in grasslands. J. Veg. Sci 9:409416.Google Scholar
Magda, D. and Jarry, M. 2000. Prediction of cutting effects on a population of Chaerophyllum aureum—a demographic approach. J. Veg. Sci 11:485492.Google Scholar
Magda, D., Theau, J. P., Duru, M., and Coleno, F. 2003. Herbage production and weed dynamics as influenced by management of hay meadows. J. Range Manag 56:127133.Google Scholar
McKenzie, F. R. 1997. The influence of grazing management on weed invasion of Lolium perenne pastures under subtropical conditions in South Africa. Trop. Grassl 31:2430.Google Scholar
Noble, I. R. 1989. Attributes of invaders and the invading process. Pages 301314 in Drake, J. A., Mooney, H. A., and di Castri, A. J. eds. Biological Invasions: A Global Perpsective. Chichester: Wiley.Google Scholar
Perrins, J., Williamson, M., and Fitter, A. 1992. Do annual weeds have predictable characteristics? Acta Oecol 13:517533.Google Scholar
Rejmanek, M. 1989. Invasibility of plant communities. Pages 369388 in Drake, J. A., Mooney, H. A., and Castri, F. D. eds. Biological Invasions: A Global Perspective. Chichester: Wiley.Google Scholar
Rejmanek, M. and Richardson, D. M. 1996. What attributes make some plant species more invasive? Ecology 77:16551661.Google Scholar
Seel, W. E. and Press, M. C. 1996. Effects of repeated parasitism by Rhinanthus minor on the growth and photosynthesis of a perennial grass Poa alpina . New Phytol 134/3:495502.Google Scholar
Silvertown, J., Franco, M., Pisanty, I., and Mednoza, A. 1993. Comparative plant demography relative—importance of life-cycle components to the finite rate of increase in woody and herbaceous plants. J. Ecol 81:465476.Google Scholar
Thalen, D. C. P., Poorter, H., Lotz, L. A. P., and Oosterveld, P. 1987. Modeling the structural changes in vegetation under different grazing regimes. Pages 167183 in Van Andel, J., Bakker, J. P., and Snaydon, R. W. eds. Disturbances in Grasslands. Geobotany Volume 10. Dordrecht: Dr W. Junk Publishers.CrossRefGoogle Scholar
Tsuyuzaki, S. and Fusayuki, K. 1996. Revegetation patterns and seedbank structure on abandoned pastures in northern Japan. Am. J. Bot 83/11:14221428.CrossRefGoogle Scholar
Williams, E. D. 1984. Some effects of fertilizer and frequency of defoliation on the botanical composition and yield of permanent grassland. Grass Forage Sci 39:311315.Google Scholar