Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T11:20:41.072Z Has data issue: false hasContentIssue false

Changes in Weed Communities of Spring Wheat Crops of Buenos Aires Province of Argentina

Published online by Cambridge University Press:  20 January 2017

Julio A. Scursoni*
Affiliation:
Departamento de Producción Vegetal, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martin 4453 (1417), Buenos Aires, Argentina
Ramón Gigón
Affiliation:
Estación Experimental Agropecuaria Bordenave, Instituto Nacional de Tecnología Agropecuaria (INTA) CC Nro. 44–8187 Bordenave, Ruta Prov., 76 km, 36.5 (8187), Buenos Aires, Argentina
Andrés N. Martín
Affiliation:
Departamento de Producción Vegetal, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martin 4453 (1417), Buenos Aires, Argentina
Mario Vigna
Affiliation:
Estación Experimental Agropecuaria Bordenave, Instituto Nacional de Tecnología Agropecuaria (INTA) CC Nro. 44–8187 Bordenave, Ruta Prov., 76 km, 36.5 (8187), Buenos Aires, Argentina
Eduardo S. Leguizamón
Affiliation:
Cátedra de Malezas, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental. Villarino, CC 14 (2125) Zavalla, Santa Fe, Argentina
Carolina Istilart
Affiliation:
Estación Experimental Agropecuaria Barrow, (INTA), CC 50 B7500WAA Tres Arroyos Ruta 3 km 487 (7500), Buenos Aires, Argentina
Ricardo López
Affiliation:
Estación Experimental Agropecuaria Bordenave, Instituto Nacional de Tecnología Agropecuaria (INTA) CC Nro. 44–8187 Bordenave, Ruta Prov., 76 km, 36.5 (8187), Buenos Aires, Argentina
*
Corresponding author's E-mail: [email protected]

Abstract

During 2004 to 2008, weed surveys were conducted in 373 wheat fields of two different cropped areas (southwest [SW] and southeast [SE]) of the southern region of Buenos Aires Province of Argentina where different weed communities were expected because of changes in cropping practices over time, including tillage, crop sequence, fertilizers, and herbicides applied. Weed communities differed between regions, with greater numbers of native species for the SW. Weed community diversity was also greater for the SW region, probably due to the more diverse land use that resulted in greater landscape heterogeneity. Rush skeletonweed, sand rocket, yellow starthistle and turnipseed occurred at higher constancy (proportion of fields in which a given species is present) in the SW region, whereas common chickweed, false bishop's weed, corn speedwell, and common lambsquarters were present more frequently in the SE region. Compared with the 1982 survey, constancy of weeds increased, but those species with high constancy in 1982 were also with high constancy in the recent surveys. Diversity (species richness) was greater in conventional than in a no-tillage system. The constancy of Italian ryegrass, sand rocket, and yellow starthistle was lower under no-till than conventional tillage. Surveys allow identification of changes in weed community related to different agricultural systems. Rotation of crops and livestock avoid the homogenization of the environment at the landscape level. Management strategies will be necessary to prevent the increase of weeds populations' size, preserving plant diversity and the properties of the agroecosystem.

Type
Weed Biology and Ecology
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Altieri, MA (1999) The ecological role of biodiversity in agroecosystems. Agric Ecosyst Environ. 74:1931.CrossRefGoogle Scholar
Andreasen, C, Stryhn, H, Streibig, (1996) Decline of the flora on Danish arable fields. J Appl Ecol 33:619626.Google Scholar
Booth, B, Swanton, CJ (2002) Assembly theory applied to weed communities. Weed Sci. 50:213.Google Scholar
Catullo, JC, Valetti, OE, Rodriguez, ML, Sosa, CA (1983) Relevamiento de malezas en cultivos comerciales de trigo y girasol en el centro sur bonaerense. Pages 204235 in Proceedings of IX Reunión Argentina sobre la Maleza y su control, Santa Fe, Argentina Google Scholar
Chaneton, EJ (2006) Impacto ecológico de las perturbaciones naturales. Las inundaciones en pastizales pampeanos. Ci. Hoy 16:1832.Google Scholar
Chauhan, BS, Gill, G, Preston, C (2006a) Seedling recruitment pattern and depth of recruitment of 10 weed species in minimum tillage and no-till seeding systems. Weed Sci. 54:658668.CrossRefGoogle Scholar
Chauhan, BS, Gill, G, Preston, C (2006b) Influence of tillage systems on vertical distribution, seedling recruitment and persistence of rigid ryegrass (Lolium rigidum) seed bank. Weed Sci. 54:669676.CrossRefGoogle Scholar
Cobb, AH, Kirkwood, RC (2000) Challenges for herbicide development. Pp 124 in Cobb, AH and Kirkwood, RC, eds. Herbicides and Their Mechanisms of Action. Sheffield, UK Sheffield Academic Press Google Scholar
Cruzate, G, Panigatti, J, Moscatelli, G (2008) Suelos y Ambientes de Buenos Aires. http://www.inta.gov.ar/suelos/imagenes/Buenos%20Aires.jpg. Accessed February 10, 2011Google Scholar
[DAFWA] Department of Agriculture and Food: Western Australia. 2012, http://www.agric.wa.gov.au/PC_93002.html?s=1070562865. Accessed August 14, 2012Google Scholar
de la Fuente, E, Suarez, SA, Ghersa, CM (2006) Soybean weed community composition and richness between 1995 and 2003 in the rolling Pampas (Argentina). Agric Ecosyst Environ. 115:229236.Google Scholar
Doucet, C, Weaver, SE, Hamill, AS, Zhang, J (1999) Separating the effects of crop rotaion from weeed management on weed density and diversity. Weed Sci. 47:729735.Google Scholar
[EPPO] Plant Protection Thesaurus. 2011, http://eppt.eppo.org/. Accessed October 21, 2011Google Scholar
[FAO] Organización de las Naciones Unidas para la Agricultura y la Alimentación Roma. 2004. Uso de Fertilizantes por Cultivo en Argentina. http://www.fao.org/docrep/007/y5210s/y5210s00.htm. Accessed December, 2012Google Scholar
Gabriel, D, Thies, C, Tscharntke, T (2005) Local diversity of arable weeds increases with landscape complexity. Perspect Plant Ecol Evol Syst. 7:8593.Google Scholar
Ghersa, CM, Leon, RJC (1999) Successional changes in agroecosystems of the rolling Pampas. Pages 487502 in Walker, LR, ed. Ecosystems of Disturbed Ground. Ecosystems of the World. Volume 16. New York Elsevier Google Scholar
Ghersa, CM, Martinez-Ghersa, MA (2000) Ecological correlates of weed seed size and persistence in the soil under different tilling systems: implications for weed management. Field Crops Res 67:141148.Google Scholar
Ghersa, CM, Martínez-Ghersa, MA, León, RJC (1998) Cambios en el Paisaje pampeano y sus efectos sobre los sistemas de soporte de la vida. Pp 3871 in Solbrig, OT, and Vainesman, L, eds. Hacia una Agricultura Productiva y Sostenible en la Pampa. Buenos Aires Harvard University David Rockefeller Center for Latin American Studies, Consejo Profesional de Ingeniería Agronómica Google Scholar
Hanf, M (1983) The arable weeds of Europe with their seedlings and seeds. Limburgerhof, Germany BASF Aktiengesellschaft. 318 pGoogle Scholar
Heap, I (2012) International Survey of Herbicide Resistant Weeds. 2012. http://www.weedscience.org/In.asp. Accessed February 5, 2012Google Scholar
Hierro, JL, Villarreal, D, Eren, O, Graham, JM, Callaway, RM (2006) Disturbance facilitates invasion: the effects are stronger abroad than at home. Am Nat. 168:144156.CrossRefGoogle ScholarPubMed
Leemis, LM, Trivedi, KS (1996) A comparison of approximate interval estimators for the Bernoulli parameter. Am Stat 50:6368.Google Scholar
Legere, A, Samson, N (2004) Tillage and weed management effects on weeds in barley–red clover cropping systems. Weed Sci. 52:881885.Google Scholar
Legere, A, Stevenson, C, Ziadi, N (2008) Contrasting responses of weed communities and crops to 12 years of tillage and fertilization treatments. Weed Technol 22:309317.Google Scholar
Martínez-Ghersa, MA, Ghersa, CM, Satorre, EH (2000) Coevolution of agriculture systems and their weed companions: implications for research. Field Crops Res 67:181190.Google Scholar
Mas, MT, Verdú, AMC, Kruk, BC, Abelleyra, DD, Guglielmini, AC, Satorre, EH (2010) Weed communities of transgenic glyphosate-tolerant soyabean crops in ex-pasture land in the southern Mesopotamic Pampas of Argentina. Weed Res 50:320330.CrossRefGoogle Scholar
McCune, B, Mefford, MJ (1999) PC-ORD. Multivariate Analysis of Ecological Data version 2.0. Gleneden Beach, OR MjM Software Design Google Scholar
[MDA] Ministerio de Agricultura, Ganadería y Pesca de la República Argentina. 2011 Sistema Integrado de Información Agropecuaria. http://www.siia.gov.ar/index.php/series-po-tema/agricultura, Accessed October 21, 2011Google Scholar
Mohler, CL, Galford, AE (1997) Weed seedling emergence and seed survival: separating the effects of seed position and soil modification by tillage. Weed Res 37:147155.CrossRefGoogle Scholar
Scopel, AL, Ballaré, CL, Radosevich, SR (1994) Photostimulation of seed germination during soil tillage. New Phytol 126:145152.Google Scholar
Scopel, AL, Ballaré, CL, Sanchez, RA (1991) Induction of extreme light sensitivity in buried seeds and its role in the perception of soil cultivations. Plant Cell environ. 14:501508.Google Scholar
Scursoni, J (1995) Relevamiento de malezas en cultivos de cebada cervecera (Hordeum vulgare L.) en la Provincia de Buenos Aires, Argentina. Revi Facultad Agron La Plata 71:235243.Google Scholar
Scursoni, J, Delfino, AD, Gutierrez, R, Quiroga, F (2007) Cambios en la composición de la comunidad de malezas en cultivos de trigo en el sur-sureste bonaerense durante dos décadas (1981–2005). Rev. Facultad Agron UBA 27:251261.Google Scholar
Soriano, A (1965) Las malezas y su comportamiento ecológico. Ci Invest 21:259263.Google Scholar
Sosnoskie, LM, Herms, CP, Cardina, J (2006) Weed seedbank community composition in a 35-yr-old tillage and rotation experiment. Weed Sci. 54:263273.Google Scholar
Spafford, JH, Minkey, DM, Gallagher, RS, Borger, CP (2006) Variation in postdispersal weed seed predation in a crop field. Weed Sci. 54:148155.Google Scholar
Stevenson, FC, Legere, A, Simard, RR, Angers, DA, Pageau, D, Lafond, J (1997) Weed species diversity in spring barley varies with crop rotation and tillage, but not with nutrient source. Weed Sci. 45:798806.Google Scholar
Storkey, J (2006) A functional group approach to the management of UK arable weeds to support biological diversity. Weed Res 46:513522.Google Scholar
Storkey, J, Moss, SR, Cussans, JW (2010) Using assembly theory to explain changes in a weed flora in response to agricultural intensification. Weed Sci. 58:3946.Google Scholar
Suárez, SA, Ghersa, CM, de la Fuente, EB, Leon, RJC (2000) Shifts of species groups in crop–weed communities of the Pampas during 1926 to 1990 [Abstract]. III International Weed Science Congress. Foz do Iguassu, Brazil. 41 pGoogle Scholar
Tuesca, D, Puricelli, E, Papa, JC (2001) A long-term study of weed flora shifts in different tillage systems. Weed Res 41:369382.Google Scholar
Van Acker, RC, Thomas, AG, Leeson, JY, Knezevic, SZ, Frick, BL (2000) Comparison of weed communities in Manitoba ecoregions and crops. Can J Plant Sci. 80:963972.Google Scholar
Vitta, JI, Tuesca, D, Puricelli, E (2004) Widespread use of glyphosate tolerant soybean and weed community richness in Argentina. Agric Ecosyst Environ. 103:621624.Google Scholar
Wapshere, AJ, Caresche, L, Hasan, S (1976) The ecology of Chondrilla in the eastern Mediterranean. J Appl Ecol 13:545553.Google Scholar
Webster, TM, McDonald, GE (2001) A survey of weeds in various crops in Georgia. Weed Technol 15:771790.Google Scholar
Westerman, PR, Dixon, PM, Liebman, M (2009) Burial rates of surrogate seeds in arable fields. Weed Res 49:142152.Google Scholar
Yenish, JP, Doll, JD, Buhler, DD (1992) Effects of tillage on vertical distribution and viability of weed seed in soil. Weed Sci. 40:429433.Google Scholar
Zadoks, JC, Chang, TT, Konzak, CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415421.Google Scholar
Zimmerman, GM, Goetz, H, Mielke, PW Jr. (1985) Use of an improved statistical method for group comparisons to study effects of prairie fire. Ecology. 66:606611.Google Scholar