Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-25T08:11:16.887Z Has data issue: false hasContentIssue false

Cellular Characteristics of Dinitroaniline Herbicide-Resistant Goosegrass (Eleusine indica)

Published online by Cambridge University Press:  12 June 2017

Bernal E. Valverde
Affiliation:
Crop Sci. Dep., Oregon State Univ., Corvallis, OR 97331
Arnold P. Appleby
Affiliation:
Crop Sci. Dep., Oregon State Univ., Corvallis, OR 97331
Steven R. Radosevich
Affiliation:
Crop Sci. Dep., Oregon State Univ., Corvallis, OR 97331
Alfred Soeldner
Affiliation:
Dep. Bot. and Plant Pathol., Oregon State Univ., Corvallis, OR 97331

Abstract

Primary root cells from five dinitroaniline-resistant (R) and three susceptible (S) goosegrass biotypes from North Carolina and South Carolina were observed by transmission electron microscopy to determine whether resistance was associated with changes in cell wall formation. Cell wall malformations were found in some cells from two of the R-biotypes and in one of the S-biotypes. Malformations consisted of partially deposited cell walls and the inclusion of cell wall material in the cytoplasm. Some of the affected cells also had abnormal, lobed nuclei and malformed mitochondria. There seems to be little or no correlation between dinitroaniline resistance and cell wall malformations.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © 1991 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Appleby, A. P. and Valverde, B. E. 1989. Behavior of dinitroaniline herbicides in plants. Weed Technol. 3:198206.Google Scholar
2. Bajer, A. S. and Mole-Bajer, J. 1986. Drugs with colchicine-like effects that specifically disassemble plant tubulin but not animal microtubules. Ann. N.Y. Acad. Sci. 446:462472.Google Scholar
3. Bartels, P. G. and Hilton, J. L. 1973. Comparison of trifluralin, oryzalin, pronamide, propham, and colchicine treatments on microtubules. Pestic. Biochem. Physiol. 3:462472.Google Scholar
4. Bryan, J. 1974. Microtubules. Bioscience 24:701711.Google Scholar
5. Chernicky, J. P. 1985. An investigation into the resistance of goosegrass (Eleusine indica) to dinitroaniline herbicides. Ph.D. Dissertation. Univ. Illinois, Urbana, Champaign.Google Scholar
6. Clayton, L. 1985. The cytoskeleton and the plant cell cycle. Pages 113131 in Bryant, J. A. and Francis, D., eds. The cell division cycle in plants. Cambridge Univ. Press, Cambridge.Google Scholar
7. de Duve, C. 1984. A guided tour of the living cell. Scientific American Books, Inc., New York. 423 pp.Google Scholar
8. Dustin, P. 1984. Microtubules. Springer, Heidelberg, New York. 482 pp.Google Scholar
9. Eleftheriou, E. P. 1987. Microtubules and cell wall development in differentiating protophloem sieve elements of Triticum aestivum L. J. Cell Sci. 87:595597.CrossRefGoogle Scholar
10. Gunning, B. E. and Hardham, A. R. 1979. Microtubules and morphogenesis in plants. Endeavour 3:112117.Google Scholar
11. Hess, F. D. 1979. The influence of the herbicide trifluralin on flagellar regeneration in Chlamydomonas . Exp. Cell Res. 119:99109.Google Scholar
12. Hess, F. D. and Bayer, D. E. 1977. The effect of trifluralin on the ultrastructure of dividing cells of the root meristem of cotton (Gossypium hirsutum L. ‘Acala’ 4–42). J. Cell Sci. 15:429441.Google Scholar
13. Hess, F. D. and Bayer, D. E. 1977. Binding of the herbicide trifluralin to Chlamydomonas flagellar tubulin. J. Cell Sci. 24:351360.Google Scholar
14. Jackson, W. T. and Stetler, D. A. 1973. Regulation of mitosis. IV. An in vitro and ultrastructural study of effects of trifluralin. Am. J. Bot. 51:15131518.Google Scholar
15. Johnson, K. A. and Borisy, G. G. 1975. The equilibrium assembly of microtubules in vitro . Pages 119141 in Inoue, J. and Stephens, R., eds. Molecules and cell movement. Raven Press, New York.Google Scholar
16. Marchant, H. J. 1979. Microtubules, cell wall deposition, and determination of cell shape. Nature 278:167168.Google Scholar
17. Morejohn, L. C., Bureau, T. E., and Fosket, D. E. 1983. Oryzalin binds to plant tubulin (T) and inhibits taxol-induced microtubule (MT) assembly in vitro . J. Cell Biol. 97:211a.Google Scholar
18. Morejohn, L. C., Bureau, T. E., Tocchi, L. P., and Fosket, D. E. 1984. Tubulins from different higher plant species are immunologically nonidentical and bind colchicine differentially. Proc. Nat Acad. Sci. 81:14401444.Google Scholar
19. Morejohn, L. C. and Fosket, D. E. 1984. Taxol-induced microtubule polymerization in vitro and its inhibition by colchicine. J. Cell Biol. 99:141147.CrossRefGoogle ScholarPubMed
20. Morejohn, L. C. and Fosket, D. E. 1986. Tubulins from plants, fungi and protists. Pages 257329 in Shay, J. W., ed. Cell and Molecular Biology of the Cytoskeleton. Plenum Press, New York.Google Scholar
21. Quader, H., Herth, W., Ryser, U., and Schnepf, E. 1987. Cytoskeletal elements in cotton seed hair development in vitro: their possible regulatory role in cell wall organization. Protoplasma 137:5662.Google Scholar
22. Strachan, S. D. and Hess, F. D. 1983. The biochemical mechanism of action of the dinitroaniline herbicide oryzalin. Pestic. Biochem. Physiol. 20:131150.Google Scholar
23. Upadhyaya, M. K. and Nooden, L. D. 1977. Mode of dinitroaniline herbicide action. I. Analysis of the colchicine-like effects of dinitroaniline herbicides. Plant Cell Physiol. 18:13191330.Google Scholar
24. Valverde, B. E. 1989. Dinitroaniline-herbicide resistance in goosegrass (Eleusine indica): Ecophysiological aspects. Ph.D. Dissertation. Oregon State Univ., Corvallis, OR.Google Scholar
25. Vaughan, M. A., Vaughn, K. C., and Gossett, B. J. 1988. Intermediate resistance to dinitroaniline herbicides by a novel biotype of Eleusine . Plant Physiol. (Abstr.) 86:4 Suppl.Google Scholar
26. Vaughn, K. C. 1986. Cytological studies of dinitroaniline-resistant Eleusine . Pestic. Biochem. Physiol. 26:6674.CrossRefGoogle Scholar
27. Vaughn, K. C. 1986. Dinitroaniline resistance in goosegrass [Eleusine indica (L.) Gaertn.] is due to an altered tubulin. Weed Sci. Soc. Am. Abstr. 26:77.Google Scholar