Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T22:09:49.190Z Has data issue: false hasContentIssue false

Biomass, Fecundity, and Interference Ability of Multiple Herbicide-Resistant and -Susceptible Late Watergrass (Echinochloa phyllopogon)

Published online by Cambridge University Press:  20 January 2017

Louis G. Boddy
Affiliation:
Department of Plant Sciences, Mail Stop 4, University of California-Davis, Davis, CA 95616-8780
Jens C. Streibig
Affiliation:
Department of Agriculture and Ecology, University of Copenhagen, Hoejbakkegaard Alle 9, DK-2630 Taastrup, Denmark
Yuji Yamasue
Affiliation:
Kyoto University, Graduate School of Agriculture, Uji 611-0002, Kyoto, Japan
Albert J. Fischer*
Affiliation:
Department of Plant Sciences, Mail Stop 4, University of California-Davis, Davis, CA 95616-8780
*
Corresponding author's E-mail: [email protected]

Abstract

Echinochloa phyllopogon is a serious weed of California rice that has evolved resistance to most grass herbicides. We assessed differences in growth, interference, and fecundity between multiple resistant (R) and susceptible (S) E. phyllopogon. Interference with rice by R and S plants was similar, although R plants were shorter and had less leaf area and shoot biomass than S plants. Interference by one S or R E. phyllopogon plant with rice was 2.31 or 2.45 times greater than intraspecific interference by one rice plant, respectively. Interference was mostly driven by root interactions and E. phyllopogon on average produced seven times more root dry weight than rice. Deeper E. phyllopogon root placement compared with rice may explain niche differentiation between the two species. On average, R plants produced 55% less seeds than S plants. Lower fecundity could compromise fitness of R plants in the absence of herbicide selection, but partial avoidance of seed removal during rice harvest through earlier seed shattering may allow greater soil seed bank replenishment by R plants compared with S plants. E. phyllopogon control is needed to prevent high rice yield losses, and suppressing survivors of initial herbicide treatments is essential to limit seed bank replenishment by R plants. The potential benefits of taller rice varieties with enhanced root competitiveness, and that may be harvested earlier, should be considered.

Type
Weed Biology and Ecology
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Assemat, L., Morishima, H., and Oka, H. I. 1980. Neighbour effects between rice (Oryza sativa L.) and barnyard grass (Echinochloa crus-galli (Beauv.) strains. II. Some experiments on the mechanisms of interactions between plants. Acta Oecol./Oecol. Plant. 2:6378.Google Scholar
Bagavathiannan, M. V., Norsworthy, J. K., Jha, P., and Smith, K. 2011. Does resistance to propanil or clomazone alter the growth and competitive abilities of barnyardgrass (Echinochloa crus-galli)? Weed Sci. 59:353358.CrossRefGoogle Scholar
Bakkali, Y., Ruiz-Santaella, J. P., Osuna, M. D., Wagner, J., Fischer, A. J., and de Prado, R. 2007. Late watergrass (Echinochloa phyllopogon): mechanisms involved in the resistance to fenoxaprop-p-ethyl. J. Agric. Food Chem. 55:40524058.Google Scholar
Barnaud, A., Deu, M., Garine, E., Chantereau, J., Bolteu, J., Koïda, E. O., McKey, D., and Joly, H. I. 2009. A weed–crop complex in sorghum: the dynamics of genetic diversity in a traditional farming system. Am. J. Bot. 101:203210.Google Scholar
Barrett, S. C. H. 1983. Crop mimicry in weeds. Econ. Bot. 37:255282.CrossRefGoogle Scholar
Barrett, S. C. H. and Seaman, D. E. 1980. The weed flora of California rice fields. Aq. Bot. 9:351376.Google Scholar
Casper, B. B. and Jackson, R. B. 1997. Plant competition underground. Annu. Rev. Ecol. Syst. 28:545570.Google Scholar
Cousens, R. and Mortimer, M. 1995. Dynamics of Weed Populations. Cambridge, UK Cambridge University Press. Pp. 243282.Google Scholar
Dekker, J. H., Meggitt, W. F., and Putnam, A. R. 1983. Experimental methodologies to evaluate allelopathic plant interactions. J. Chem. Ecol. 9:945981.CrossRefGoogle ScholarPubMed
De Wit, C. T. 1960. On competition. Versl. Landbousk. Onderz. 66:182.Google Scholar
Eskelsen, S. R. and Crabtree, G. D. 1995. The role of allelopathy in buckwheat (Fagopyrum sagittatum) inhibition of Canada thistle (Cirsium arvense). Weed Sci. 43:7074.Google Scholar
Fischer, A. J., Ateh, C. M., Bayer, D. E., and Hill, J. E. 2000. Herbicide-resistant early (Echinochloa oryzoides) and late (E. phyllopogon) watergrass in California rice fields. Weed Sci. 48:225230.CrossRefGoogle Scholar
Fischer, A. J., Granados, E., and Trujillo, D. 1993. Propanil resistance in populations of junglerice (Echinochloa colona) in Colombian rice fields. Weed Sci. 41:201206.Google Scholar
Fischer, A. J., Strong, G. L., Shackel, K., and Mutters, R. G. 2010. Temporary drought can selectively suppress Schoenoplectus mucronatus in rice. Aq. Bot. 92:257264.Google Scholar
Forcella, F., Colbach, N., and Kegode, G. O. 2000. Estimating seed production of three Setaria species in row crops. Weed Sci. 48:436444.Google Scholar
Freckleton, R. P. and Watkinson, A. R. 2000. Designs for greenhouse studies of interactions between plants: an analytical perspective. J. Ecol. 88:386391.Google Scholar
Gealy, D. R. and Fischer, A. J. 2010. 13C discrimination: a stable isotope method to quantify root interactions between C3 rice (Oryza sativa) and C4 barnyardgrass (Echinochloa crus-galli) in flooded fields. Weed Sci. 58:359368.CrossRefGoogle Scholar
Gibson, K. D., Fischer, A. J., Foin, T. C., and Hill, J. E. 2003. Crop traits related to weed suppression in water-seeded rice (Oryza sativa L). Weed Sci. 51:8793.Google Scholar
Gibson, K. D., Foin, T. C., and Hill, J. E. 1999. The relative importance of root and shoot competition between water-seeded rice and Echinochloa phyllopogon . Weed Res. 39:181190.Google Scholar
Gressel, J. 2009. Evolving understanding of the evolution of herbicide resistance. Pest. Manag. Sci. 65:11641173.Google Scholar
Gressel, J. and Segel, L. A. 1990. Modeling the effectiveness of herbicide rotations and mixtures as strategies to delay or preclude resistance. Weed Technol. 4:186198.Google Scholar
Gundel, P. E., Martinez-Ghersa, M. A., and Ghersa, C. M. 2008. Dormancy, germination and ageing of Lolium multiflorum seeds following contrasting herbicide selection regimes. Eur. J. Agron. 28:606613.Google Scholar
Harper, J. L. 1977. Population Biology of Plants. London Academic Press. Pp. 260262.Google Scholar
Hill, J. E. 2004. Rice growth and development in Rice Production Workshop: 2009. UC Cooperative Extension Rice Research Board, 11 Pp.Google Scholar
Hill, J. E., Le Strange, M. L., Bayer, D. E., and Williams, J. F. 1985. Integrated weed management in California. Pages 100104 in Proceedings of the Western Society of Weed Science, Volume 38. Reno, NV Western Society of Weed Science.Google Scholar
Hill, N. S., Bouton, J. H., Hiatt, E. E. III, and Kittle, B. 2005. Seed maturity, germination, and endophyte relationships in tall fescue. Crop Sci. 45:859863.Google Scholar
Johnson, C. W., Carnahan, H. L., Teng, S. T., Oster, J. J., and Hill, J. E. 1986. Registration of ‘M-202’ rice. Crop Sci. 26:198.Google Scholar
Johnson, D. E., Dingkuhn, M., Jones, M. P., and Mahamane, M. C. 1998. The influence of rice plant type on the effect of weed competition on Oryza sativa and Oryza glaberrima . Weed Res. 38:207216.CrossRefGoogle Scholar
Jolliffe, P. A. 2000. The replacement series. J. Ecol. 88:371385.Google Scholar
Lambers, H., Chapin, F. S. III., and Pons, T. L. 2008. Plant Physiological Ecology. 2nd ed. New York Springer. Pp. 516518.CrossRefGoogle Scholar
Maxwell, B. D., Roush, M. L., and Radosevich, S. R. 1990. Predicting the evolution and dynamics of herbicide resistance in weed populations. Weed Technol. 4:213.Google Scholar
Menchari, Y., Chauvel, B., Darmency, H., and Délye, C. 2008. Fitness costs associated with three mutant acetylcoenzyme A carboxylase alleles endowing herbicide resistance in black-grass Alopecurus myosuroides . J. Appl. Ecol. 45:939947.Google Scholar
Mommer, L., Van Ruijven, J., De Caluwe, H., et al. 2010. Unveiling below-ground species abundance in a biodiversity experiment: a test of vertical niche differentiation among grassland species. J. Ecol. 98:11171127.Google Scholar
Neve, P. 2007. Challenges for herbicide resistance evolution and management: 50 years after Harper. Weed Res. 47:365369.Google Scholar
Norris, R. F. 1992. Relationship between inflorescence size and seed production in barnyardgrass (Echinochloa crus-galli). Weed Sci. 40:7478.Google Scholar
Osuna, M. D., Vidotto, F., Fischer, A. J., Bayer, D. E., de Prado, R., and Ferrero, A. 2002. Cross-resistance to bispyribac-sodium and bensulfuron-methyl in Echinochloa phyllopogon and Cyperus difformis . Pestic. Biochem. Physiol. 73:917.Google Scholar
Peng, S., Laza, R. C., Visperas, R. M., Sanico, A. L., Cassman, K. G., and Khush, G. S. 2000. Grain yield of rice cultivars and lines developed in the Philippines since 1966. Crop Sci. 307314.Google Scholar
Perera, K. K., Ayres, P. G., and Gunasena, H. P. M. 1992. Root growth and the relative importance of root and shoot competition in interactions between rice (Oryza sativa) and Echinochloa crus-galli . Weed Res. 32:6776.Google Scholar
Perez de Vida, F. B., Laca, E. A., Mackill, D. J., Fernández, G. M., and Fischer, A. J. 2006. Relating rice traits to weed competitiveness and yield: a path analysis. Weed Sci. 54:11221131.Google Scholar
Preston, C., Wakelin, A. M., Dolman, F. C., Bostamam, Y., and Boutsalis, P. 2009. A decade of glyphosate-resistant Lolium around the world: mechanisms, genes, fitness and agronomic management. Weed Sci. 57:435441.CrossRefGoogle Scholar
R Development Core Team. 2011. A Language and Environment for Statistical Analysis. R Foundation for Statistical Computing, Vienna, Austria, ISBN: 3-900051-07-0, http://www.R-project.org.Google Scholar
Radosevich, S. R. 1987. Methods to study interactions among crops and weeds. Weed Technol. 1:190198.Google Scholar
Radosevich, S. R., Holt, J. S., and Ghersa, C. M. 2007. Ecology of Weeds and Invasive Plants: Relationship to Agriculture and Natural Resource Management. 3rd ed. New York Wiley & Sons. Pp. 5456, 216–223.Google Scholar
Rejmánek, M., Robinson, G. R., and Rejmankova, E. 1989. Weed–crop competition: experimental designs and models for data analysis. Weed Sci. 37:276284.CrossRefGoogle Scholar
Ritz, C. and Streibig, J. C. 2005. Bioassay analysis using R. J. Stat. Software. 12:122.Google Scholar
Roush, M. L., Radosevich, S. R., Wagner, R. G., Maxwell, B. D., and Petersen, T. D. 1989. A comparison of methods for measuring effects of density and proportion in plant competition experiments. Weed Sci. 37:268275.Google Scholar
Ruiz-Santaella, J. P., De Prado, R., Wagner, J., Fischer, A. J., and Gerhards, R. 2006. Resistance mechanisms to cyhalofop-butyl in a biotype of Echinochloa phyllopogon (Stapf) Koss. from California. J. Plant Dis. Protec. 95100.Google Scholar
Schenk, H. J. 2006. Root competition: beyond resource depletion. J. Ecol. 94:725739.Google Scholar
Silvertown, J. 2004. Plant coexistence and the niche. Trends Ecol. Evol. 19:605611.CrossRefGoogle Scholar
Spitters, C. J. T. 1983. An alternative approach to the analysis of mixed cropping experiments. 1. Estimation of competition coefficients. Neth. J. Ag. Sci. 31:111.Google Scholar
Strauss, S. Y., Rudgers, J. A., Lau, J. A., and Irwin, R. E. 2002. Direct and ecological costs of resistance to herbivory. Trends Ecol. Evol. 17:278285.Google Scholar
Svejcar, T. J. and Boutton, T. W. 1985. The use of stable carbon isotope analysis in rooting studies. Oecologia. 67:205208.Google Scholar
Tsuji, R., Fischer, A. J., Yoshino, M., Roel, A., Hill, J. E., and Yamasue, Y. 2003. Herbicide-resistant late watergrass (Echinochloa phyllopogon): similarity in morphological and amplified fragment length polymorphism traits. Weed Sci. 51:740747.CrossRefGoogle Scholar
Vila-Aiub, M., Neve, P., and Powles, S. B. 2005. Resistance cost of a cytochrome P450 herbicide metabolism mechanism but not an ACCase target site mutation in a multiple resistant Lolium rigidum population. New Phytol. 167:787796.Google Scholar
Vila-Aiub, M., Neve, P., and Powles, S. B. 2009a. Fitness costs associated with evolved herbicide resistance alleles in plants. New Phytol. 184:751767.Google Scholar
Vila-Aiub, M., Neve, P., and Powles, S. B. 2009b. Evidence for an ecological cost of enhanced herbicide metabolism in Lolium rigidum . J. Ecol. 97:772780.Google Scholar
Vila-Aiub, M., Neve, P., and Roux, F. 2011. A unified approach to the estimation and interpretation of resistance costs in plants. Heredity. 107:386394.CrossRefGoogle Scholar
Watkinson, A. R. 1980. Density dependence in single-species populations of plants. J. Theor. Biol. 83:345357.Google Scholar
Williams, J. 2004. Planting and stand establishment in Rice Production Workshop: 2009. UC Cooperative Extension Rice Research Board, 10 Pp.Google Scholar
Wilson, J. B. 1988. Shoot competition and root competition. J. Appl. Ecol. 25:279296.Google Scholar
Yabuno, T. 1966. Biosystematic study of the genus Echinochloa . Jpn. J. Bot. 19:277323.Google Scholar
Yamasue, Y. 2001. Strategy of Echinochloa phyllopogon Vasing. for survival in flooded rice. Weed Biol. Manag. 1:2836.Google Scholar
Yamasue, Y., Murayama, H., Inoue, H., Matsui, T., and Kusanagi, T. 1997. Productive structures of rice and Echinochloa phyllopogon Vasing. in mixed stands. J. Weed Sci. Technol. 42:357365.CrossRefGoogle Scholar
Yasuor, H., Milan, M., Eckert, J. W., and Fischer, A. J. 2012. Quinclorac resistance: a concerted hormonal and enzymatic effort in Echinochloa phyllopogon . Pest Manag. Sci. 68:108115.Google Scholar
Yasuor, H., Osuna, M. D., Ortiz, A. A., Saldaín, N. E., Eckert, J. W., and Fischer, A. J. 2009. Mechanism of resistance to penoxsulam in late watergrass [Echinochloa phyllopogon (Stapf) Koss.]. J. Agric. Food Chem. 57:36533660.CrossRefGoogle ScholarPubMed
Yasuor, H., TenBrook, P. L., Tjeerdema, R. S., and Fischer, A. J. 2008. Responses to clomazone and 5-ketoclomazone by Echinochloa phyllopogon resistant to multiple herbicides in Californian rice fields. Pest Manag. Sci. 64:10311039.Google Scholar
Yun, M. S., Yogo, Y., Miura, R., Yamasue, Y., and Fischer, A. J. 2005. Cytochrome P-450 monooxygenase activity in herbicide-resistant and -susceptible late watergrass (Echinochloa phyllopogon). Pest. Biochem. Physiol. 83:107114.Google Scholar