Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-15T05:22:00.415Z Has data issue: false hasContentIssue false

The banning of bromacil in Costa Rica

Published online by Cambridge University Press:  07 May 2020

Bernal E. Valverde*
Affiliation:
President and Senior Researcher, Investigación y Desarrollo en Agricultura Tropical, Alajuela, Costa Rica
Lilliana Chaves
Affiliation:
Director, Consultant and Independent Researcher, Consultorías Agrícolas (Consagri), Heredia40801, Costa Rica
*
Author for correspondence: Bernal E. Valverde, Investigación y Desarrollo en Agricultura Tropical, PO Box 2191, Alajuela4050, Costa Rica. (Email: [email protected])

Abstract

Bromacil was introduced at the beginning of the 1960s for PRE and early POST control of grasses and broadleaf weeds, particularly in citrus (Rutaceae spp.) orchards and pineapple [Ananas comosus (L.) Merr.] plantations as well as in noncultivated areas. Both the acidic form of bromacil and its lithium salt are highly soluble in water; the herbicide is moderately to highly persistent in the soil with a half-life from 60 d to 8 mo and is prone to percolate in the soil and reach groundwater. In Costa Rica, bromacil was registered for both citrus and pineapple, but in recent years its major use has been in pineapple. An average of 60,000 kg of active bromacil per year were imported before its banning in 2017. Pineapple is grown in more than 40,000 ha; the recommended rate of bromacil was 1.6 to 3.2 kg ha−1. In a survey conducted by the National University between 2001 and 2004, bromacil was the most frequently found pesticide, at levels between 0.5 and 20 µg L−1, in water springs and wells in the pineapple-growing area of the Caribbean side of Costa Rica. Further studies conducted more recently also documented the presence of bromacil in the ground and surface water in areas where pineapple is planted. The local standard for the quality of drinking water of 2015 established maximum acceptable values of 0.1 µg L−1 and 0.5 µg L−1 for a single pesticide and for the sum of all pesticides present, respectively, but it was amended for bromacil to comply with requirements determined by the Constitutional Court to “non-detectable by method.” This paper provides an account of the scientific and administrative considerations for the banning of bromacil that occurred on May 24, 2017.

Type
Symposium
Copyright
© Weed Science Society of America, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: William Vencill, University of Georgia

References

Alavi, G, Sanda, M, Loo, B, Green, RE, Ray, C (2008) Movement of bromacil in a Hawaii soil under pineapple cultivation—a field study. Chemosphere 72:4552CrossRefGoogle Scholar
Alva, AK, Singh, M (1991) Use of adjuvants to minimize leaching of herbicides in soil. Environ Manag 15:263267CrossRefGoogle Scholar
Anthony, S, Hunt, C Jr., Brasher, A, Miller, L, Tomlinson, M (2004) Water quality on the island of Oahu, Hawaii, 1999–2001. Reston, Va.: U.S. Geological Survey. 37 pGoogle Scholar
Bravo, V, de la Cruz, E, Herrera, G, Ramírez, F (2013) Uso de plaguicidas en cultivos agrícolas como herramienta para el monitoreo de peligros en salud. Uniciencia 27:351376Google Scholar
[CANAPEP] Cámara Nacional de Productores y Exportadores de Piña (2019) Estadísticas. https://canapep.com/estadisticas. Accessed: August 19, 2019Google Scholar
Castillo, LE, Ruepert, C, Ugalde, R (2009) Ecotoxicology and pesticides in Central America. Pages 4754in Newman, MC, ed. Fundamentals of Ecotoxicology. Boca Raton, FL: CRC PressGoogle Scholar
[CICA] Centro de Investigación en Contaminación Ambiental (2015) Informe final. Proyecto: Caracterización de las prácticas agrícolas y el uso y manejo de agroquímicos en el cultivo de piña, para la implementación de buenas prácticas agrícolas (BPA). San José, Costa Rica: Universidad de Costa Rica. 131 pGoogle Scholar
[CICA] Centro de Investigación en Contaminación Ambiental (2016) Informe final. Proyecto: Caracterización de las prácticas agrícolas y el uso y manejo de agroquímicos en el cultivo de piña, para la implementación de buenas prácticas agrícolas (BPA). San José, Costa Rica: Universidad de Costa Rica. 136 pGoogle Scholar
Echeverría-Sáenz, S, Mena, F, Pinnock, M, Ruepert, C, Solano, K, de la Cruz, E, Campos, B, Sánchez-Avila, J, Lacorte, S, Barata, C (2012) Environmental hazards of pesticides from pineapple crop production in the Río Jiménez watershed (Caribbean Coast, Costa Rica). Sci Total Environ 440:106114CrossRefGoogle Scholar
Florida Department of Agriculture and Consumer Services (1995) Restrictions on Use of Bromacil in Citrus; Penalties. Rule 5E-2.038. Tallahassee, FL: Florida Department of Agriculture and Consumer Services. 1 p. https://www.flrules.org/gateway/ruleno.asp?id=5E-2.038. Accessed: August 19, 2019Google Scholar
Fournier, M-L, Echeverría-Sáenz, S, Mena, F, Arias-Andrés, M, de la Cruz, E, Ruepert, C (2018) Risk assessment of agriculture impact on the Frío River watershed and Caño Negro Ramsar wetland, Costa Rica. Environ Sci Pollut R 25:1334713359CrossRefGoogle ScholarPubMed
Gerstl, Z, Yaron, B (1983a) Behavior of bromacil and napropamide in soils: I. Adsorption and degradation. Soil Sci Soc Am J 47:474478CrossRefGoogle Scholar
Gerstl, Z, Yaron, B (1983b) Behavior of bromacil and napropamide in soils: II. Distribution after application from a point source. Soil Sci Soc Am J 47:478483CrossRefGoogle Scholar
Gómez de Barreda, D, Gamón Vila, M, Lorenzo Rueda, E, Saez Olmo, A, Gómez de Barreda, D, Garcia de la Cuadra, J, Ten, A, Peris, C (1998) Dissipation of some citrus selective residual herbicides in an irrigation well. J Chromatogr A 795:125131CrossRefGoogle Scholar
Ibáñez, M, Sancho, JV, Pozo, OJ, Hernández, F (2011) Use of quadrupole time-of-flight mass spectrometry to determine proposed structures of transformation products of the herbicide bromacil after water chlorination. Rapid Commun Mass Spectrom 25:31033113CrossRefGoogle ScholarPubMed
Jhala, AJ, Singh, M (2017) Leaching of indaziflam compared with residual herbicides commonly used in Florida citrus. Weed Technol 26:602607CrossRefGoogle Scholar
Jiménez Díaz, JA (1999) Manual práctico para el cultivo de piña de exportación. Cartago, Costa Rica: Editorial Tecnológica de Costa Rica. 224 pGoogle Scholar
Li, QX, Hwang, EC, Guo, F (2001) Occurrence of herbicides and their degradates in Hawaii’s groundwater. Bull Environ Contam Toxicol 66:653659Google ScholarPubMed
Mena, F, Fernandez San Juan, M, Campos, B, Sanchez-Avila, J, Faria, M, Pinnock, M, de la Cruz, E, Lacorte, S, Soares, AMVM, Barata, C (2014) Pesticide residue analyses and biomarker responses of native Costa Rican fish of the Poeciliidae and Cichlidae families to assess environmental impacts of pesticides in Palo Verde National Park. J Environ Biol 35: 1927Google ScholarPubMed
Miles, CJ, Pfeuffer, RJ (1997) Pesticides in canals of South Florida. Arch Environ Contam Toxicol 32:337345CrossRefGoogle ScholarPubMed
[MAG-MINAE-S] Ministerio de Agricultura y Ganadería, Ministerio de Ambiente y Energía, Ministerio de Salud (2017) Decreto Ejecutivo 40423-MAG-MINAE-S, Prohibición del registro, importación, exportación, fabricación, formulación, almacenamiento, distribución, transporte, reempaque, reenvase, manipulación, venta, mezcla y uso de ingredientes activos grado técnico y plaguicidas sintéticos formulados que contengan el ingrediente activo 5-bromo-3-sec-butyl-6-methyluracil, de nombre común bromacil y su sal de litio. La Gaceta (Diario Oficial) 124:1016Google Scholar
Pineapple Company (2019) The History of Pineapple in Costa Rica and the World. Pital, San Carlos, Costa Rica. https://pineapplecr.com/en/the-history-of-pineapple-in-costa-rica-and-the-world. Accessed: July 13, 2019Google Scholar
[Procomer] Promotora de Comercio Exterior de Costa Rica (2019) Portal estadístico de comercio exterior. http://sistemas.procomer.go.cr/estadisticas/inicio.aspx. Accessed: August 19, 2019Google Scholar
Rämö, RA, van den Brink, PJ, Ruepert, C, Castillo, LE, Gunnarsson, JS (2018) Environmental risk assessment of pesticides in the River Madre de Dios, Costa Rica using PERPEST, SSD, and msPAF models. Environ Sci Pollut Res Int 25:1325413269CrossRefGoogle Scholar
Rao, PSC, Hornsby, AG, Jessup, RE (1985) Indices for ranking the potential for pesticide contamination of groundwater. Proceedings of the Soil and Crop Science Society of Florida 44:18Google Scholar
Reddy, KN, Singh, M, Alva, AK (1992) Sorption and leaching of bromacil and simazine in Florida flatwoods soils. Bull Environ Contam Toxicol 48:662670CrossRefGoogle ScholarPubMed
Ruepert, C, Castillo, LE, Bravo, V, Fallas, J (2005) Vulnerabilidad de las aguas subterráneas a la contaminación por plaguicidas en Costa Rica. Estudio preliminar. Heredia, Costa Rica: Universidad Nacional. 57 pGoogle Scholar
Schuler, LJ, Rand, GM (2008) Aquatic risk assessment of herbicides in freshwater ecosystems of South Florida. Arch Environ Contam Toxicol 54:571583CrossRefGoogle ScholarPubMed
Sequeira, MA (2007) Informe sobre la calidad del agua en las fuentes de abastecimiento de los acueductos de El Cairo, Luisiana y Milano de Siquirres. San José, Costa Rica: Laboratorio Nacional de Aguas. 7 pGoogle Scholar
Shahbandeh, M (2019) Leading Countries in Pineapple Production Worldwide in 2017. https://www.statista.com/statistics/298517/global-pineapple-production-by-leading-countries. Accessed: August 10, 2019Google Scholar
Toiber-Yasur, I, Rosner, M, Hadas, A, Russo, D, Yaron, B (1999) Leaching of terbuthylazine and bromacil through field soils. Water Air Soil Pollut 113:319335CrossRefGoogle Scholar
[USEPA] U.S. Environmental Protection Agency (2018) 2018 Edition of the Drinking Water Standards and Health Advisories Tables. Washington, DC: U.S. Environmental Protection Agency. 20 pGoogle Scholar
Wang, X, Ngo, TX, Zhou, Y, Nonner, JC (1998) Modeling and remediation of ground water contamination at the Engelse Werk wellfield. Ground Water Monit Rem 18:114124CrossRefGoogle Scholar
Wilson, PC, Boman, BJ (2011) Characterization of selected organo-nitrogen herbicides in south florida canals: exposure and risk assessments. Sci Total Environ 412–413:119126CrossRefGoogle ScholarPubMed
Zhu, Y, Li, QX (2002) Movement of bromacil and hexazinone in soils of Hawaiian pineapple fields. Chemosphere 49:669674CrossRefGoogle ScholarPubMed
Supplementary material: File

Valverde and Chaves supplementary material

Tables S1-S2

Download Valverde and Chaves supplementary material(File)
File 276.5 KB