Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-18T21:49:46.618Z Has data issue: false hasContentIssue false

The Allelopathic Effect of Yellow Nutsedge (Cyperus esculentus) on Corn (Zea mays) and Soybeans (Glycine max)

Published online by Cambridge University Press:  12 June 2017

Dirk C. Drost
Affiliation:
Dept. of Agron., Univ. of Wisconsin-Madison, Madison, WI 53706
Jerry D. Doll
Affiliation:
Dept. of Agron., Univ. of Wisconsin-Madison, Madison, WI 53706

Abstract

Four greenhouse experiments were conducted to study the effects of plant residues and extracts of yellow nutsedge (Cyperus esculentus L.) plant residues on the growth of corn (Zea mays L.) and soybeans [Glycine max (L.) Merr.]. At equal concentrations, tuber residues reduced the dry weight of corn and soybeans more than foliage residues. As the concentration increased, growth decreased, affecting soybeans more than corn. Soybean growth was significantly reduced by the addition of tuber extracts. At a constant residue concentration, increasing the percentage of sand in the soil mixture reduced the growth of corn and soybeans. Growth inhibition was greatest when tuber residues were in contact with the corn or soybean seed. We conclude that extracts and residues of yellow nutsedge have an allelopathic effect on corn and soybeans under greenhouse conditions.

Type
Research Article
Copyright
Copyright © 1980 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Armstrong, T. F. 1975. The problem: Yellow nutsedge. Proc. North Cent. Weed Control Conf. 30:120121.Google Scholar
2. Bell, D. T. and Koeppe, D. E. 1972. Noncompetitive effects of giant foxtail on the growth of corn. Agron. J. 64:321325.CrossRefGoogle Scholar
3. Bendall, G. M. 1975. The allelopathic activity of Californian thistle [Cirsium arvense (l.) Scop.] in Tasmania. Weed Res. 15: 7781.Google Scholar
4. Bieber, G. L. and Hoveland, C. S. 1968. Phytotoxicity of plant materials to the germination of crownvetch (Cornilla varia L.). Agron. J. 60:185188.CrossRefGoogle Scholar
5. Blankendaal, M., Hodgson, R. H., Davis, D. G., Hoerauf, R. A., and Shimabukuro, R. H. 1972. Growing plants without soil for experimental use. Misc. Publ. No. 1251, ARS, USDA, Washington, DC. 17 pp.Google Scholar
6. Bucholtz, K. P. 1971. The influence of allelopathy on mineral nutrition. Pages 8689 in Biochemical Interactions Among Plants. Natl. Acad. Sci., Washington, DC.Google Scholar
7. Doll, J. D. 1978. A survey of perennial weed problems in Wisconsin. Proc. North Cent. Weed Control Conf. 33:7274.Google Scholar
8. Friedman, T. and Horowitz, M. 1970. Phytotoxicity of subterranean residues of three perennial weeds. Weed Res. 10:382385.CrossRefGoogle Scholar
9. Friedman, T. and Horowitz, M. 1971. Biologically active substances in subterranean parts of purple nutsedge. Weed Sci. 19:398401.CrossRefGoogle Scholar
10. Guenzi, W. D. and McCalla, T. M. 1966. Phenolic acids in oats, wheat, sorghum, and corn residues and their phytotoxicity. Agron. J. 58:303304.CrossRefGoogle Scholar
11. Guenzi, W. D., McCalla, T. M., and Norstadt, F. A. 1967. Presence and persistence of phytotoxic substances in wheat, oat, corn, and sorghum residues. Agron. J. 59:163165.CrossRefGoogle Scholar
12. Horowitz, M. and Friedman, T. 1971. Biological activity of subterranean residues of Cynodon dactylon L., Sorghum halepense L., and Cyperus rotundus L. Weed Res. 11:8893.CrossRefGoogle Scholar
13. Horsley, S. B. 1977. Allelopathic interference among plants. II. Physiological modes of action. Pages 39136 in Wilcox, H. E. and Hamer, A., eds. Proc. 4th North Am. For. Biol. Workshop. Syracuse Univ. Press, Syracuse, New York.Google Scholar
14. Jangaard, N. O., Sckerl, M. M., and Schieferstein, R. H. 1971. The role of phenolics and abscisic acid in nutsedge tuber dormancy. Weed Sci. 19:1720.CrossRefGoogle Scholar
15. Kommedahl, T., Kotheimer, J. B., and Bernardini, J. V. 1959. The effects of quackgrass on germination and seedling development of certain crop plants. Weeds 7:112.CrossRefGoogle Scholar
16. Lucena, J. M. and Doll, J. D. 1976. Effects of growth inhibitors of purple nutsedge on sorghum and soybeans. Rev. Comalfi 4:241256.Google Scholar
17. LeTourneau, D. and Heggeness, H. G. 1957. Germination and growth inhibitors in leafy spurge foliage and quackgrass rhizomes. Weeds 5:1219.CrossRefGoogle Scholar
18. Patrick, Z. A., Toussoun, T. A., and Snyder, W. C. 1963. Phytotoxic substances in arable soil associated with the decomposition of plant residues. Phytopathology 53:152161.Google Scholar
19. Putnam, A. R. and Duke, W. B. 1978. Allelopathy in agroecosystems. Annu. Rev. Phytopathol. 16:431451.CrossRefGoogle Scholar
20. Sanchez Tames, R., Gesto, M. D. V., and Vieitez, E. 1973. Growth substances isolated from tubers of Cyperus esculentus var. aureus . Physiol. Plant. 28:195200.CrossRefGoogle Scholar
21. Steenhagen, D. A. and Zimdahl, R. L. 1979. Allelopathy of leafy spurge (Euphorbia esula . Weed Sci. 27:13.CrossRefGoogle Scholar
22. Stoller, E. W., Wax, L. M., and Slife, F. W. 1979. Yellow nutsedge (Cyperus esculentus) competition and control in corn (Zea mays). Weed Sci. 27, 3237.CrossRefGoogle Scholar
23. Tumbelson, M. E. and Kommendahl, T. 1962. Factors affecting dormancy in tubers of Cyperus esculentus . Bot. Gaz. 123:186190.CrossRefGoogle Scholar