Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T21:36:11.577Z Has data issue: false hasContentIssue false

Advanced Technologies for Parasitic Weed Control

Published online by Cambridge University Press:  20 January 2017

R. Aly*
Affiliation:
Department of Plant Disease and Weed Research, ARO, The Volcani Center, Newe-Yaar Research Center, P.O. Box 1021, Ramat Yeshai 30095, Israel
*
Corresponding author's E-mail: [email protected]

Abstract

Parasitic weeds such as Phelipanche and Orobanche are obligate holoparasites that attack roots of almost all economically important crops in semiarid regions of the world. A wide variety of parasitic weed control strategies (chemical, biological, cultural, and resistant crops) has been tried. Unfortunately, most are partially effective and have significant limitations. The current mini review will discuss the needs for alternative methods and will summarize current and new biotechnology-based approaches for broomrape control. At present, we have generated transgenic tobacco plants expressing a cecropin peptide (sarcotoxin IA), under the control of the inducible HMG2 promoter. Transgenic lines enhanced host resistance to the parasitic weed; transgenes showed higher numbers of aborted parasitization events, reduced Phelipanche biomass, and increased host biomass. Sarcotoxin IA had no obvious effect on growth and development of transgenic host plants. Mannitol content in the parasite is regulated by Mannose 6-Phosphate Reductase (M6PR) gene, an essential process to broomrape species for water and nutrient uptake from the host. In our study, we used the inverted repeat technique to silence the parasite target gene, M6PR. In this study it was shown that the endogenous M6PR mRNA from P. aegyptiaca tubercles or shoots grown on transgenic tomato plants harboring the M6PR silencing construct was reduced by 60 to 80%. The number of dead tubercles was also increased significantly on transgenic plants as compared with the control plants. The strategies presented here are potentially superior to other methods in that they are effective, have a low cost of implementation for producers, and are safe for the environment.

Type
Symposium
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alonso, L. C. 1998. Resistance to Orobanche and resistance breeding: a review. Pages 233257 in Wegmann, K., Musselman, L. J., and Joel, D. M., eds. Proceedings of the Fourth International Workshop on Orobanche. Albena, Bulgaria Institute for Wheat and Sunflower “Dobroudja.”.Google Scholar
Aly, R. 2007. Conventional and biotechnological approaches for control of parasitic weeds. In Vitro Cell Dev. Biol. Plant. 43:304317.CrossRefGoogle Scholar
Aly, R., Cholakh, H., Joel, D. M., Leibman, D., Steinitz, B., Zelcer, A., Naglis, A., Yarden, O., and Gal-On, A. 2009. Gene silencing of mannose 6-phosphate reductase in the parasitic weed Phelipanche aegyptiaca through the production of homologous dsRNA sequences in the host plant. Pl. Biotechnol. Jour. 7:487498.Google Scholar
Aly, R., Goldwasser, Y., Eizenberg, H., Hershenhorn, J., Golan, S., and Kleifeld, Y. 2001. Broomrape (Orobanche cumana) control in sunflower (Helianthus annuus) with Imazapic. Weed Technol. 15:306309.Google Scholar
Aly, R., Granot, D., Mahler-Slasky, Y., Halpern, N., and Galun, E. 1999. Saccharomyces cerevisiae cells, harboring the gene encoding Sarcotoxin IA secrete a peptide that is toxic to plant pathogenic bacteria. Protein Expr. Purific. 16:120124.Google Scholar
Aly, R., Plakhin, D., and Achdari, G. 2006. Expression of sarcotoxin IA gene via a root-specific tob promoter enhanced host resistance against parasitic weeds in tomato plants. Plant Cell Rep. 25:297303.Google Scholar
Antonova, T. S. 1998. Interdependence between sunflower resistance and broomrape races. Pages 147153 in Wegmann, K., Musselman, L., and Joel, D. M., eds. Current Problems in Orobanche Research. Bulgaria General Toshevo.Google Scholar
Atkinson, H. J., Urwin, P. E., and McPherson, M. J. 2003. Engineering plants for nematode resistance. Annu. Rev. Phytopathol. 41:615639.Google Scholar
Cramer, C., Weissenborn, L. D., Cottingham, C. K., Denbow, C. J., Eisenback, D., Radin, D. N. J., and Yu, X. 1993. Regulation of defense-related gene expression during plant-pathogen interactions. J. Nematol. 25:507518.Google Scholar
Cubero, J. I. and Hernández, L. 1991. Breeding faba bean (Vicia faba L.) for resistance to Orobanche crenata Forsk. Options Méditerranéennes. 10:5157.Google Scholar
Delavault, P., Simier, P., Thoiron, S., Veronesi, C., Fer, A., and Thalouarn, P. 2002. Isolation of mannose 6-phosphate reductase cDNA, changes in enzyme activity and mannitol content in broomrape (Orobanche ramosa) parasitic on tomato roots. Physiol. Plant. 115:4855.Google Scholar
Ejeta, G., Butler, L. G., Hess, D. E., and Vogler, R. K. 1991. Pages 539544 in Ransom, J. K., Musselman, L. J., Worsham, A. D., and Parker, C., eds. Proceedings of the 5th International Symposium of Parasitic Weeds. Nairobi, Kenya CIMMYT.Google Scholar
Eizenberg, H., Colquhoun, J. B., and Mallory-Smith, C. A. 2004. The relationship between growing degree days and small broomrape (Orobanche minor) parasitism in red clover. Weed Sci. 52:735741.CrossRefGoogle Scholar
Fernández-Martínez, J. M., Melero Vara, J. J., Muñoz Ruso, J., and Domínguez, J. 2000. Selection of wild and cultivated sunflowers for resistance to a new race of broomrape which overcomes resistance of the Or5 gene. Crop Sci. 40:550555.Google Scholar
Foy, C. L., Jain, R., and Jacobsohn, R. 1989. Recent approaches for chemical control of broomrape (Orobanche spp.): a review. Rev. Weed Sci. 4:123152.Google Scholar
Garcia-Torres, L., Lopez-Granados, F., and Jurado-Exposito, M. 1995. Imazapyr applied postemergence in sunflower (Helianthus annuus). Weed Res. 34:395402.Google Scholar
Goldwasser, Y. and Kleifeld, Y. 2004. Recent approaches to Orobanche management: a review. Pages 439466 in Inderjit, . ed. Weed Biology and Management. The Netherlands Kluwer.CrossRefGoogle Scholar
Gressel, J., Segel, L., and Ransom, J. K. 1996. Managing the delay of evaluation of herbicide resistance in parasitic weeds. Int. J. Pest Manag. 42:113129.Google Scholar
Hamamouch, N., Westwood, J. H., Banner, I., Cramer, C. L., Gepstein, S., and Aly, R. 2005. A peptide from insects protects transgenic tobacco from a parasitic weed. Transgen. Res. 14:227236.CrossRefGoogle ScholarPubMed
Huang, G., Allen, R., Davis, E. L., Baum, T. J., and Hussey, R. S. 2006. Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. Proc. Natl. Acad. Sci. USA. 103:1430214306.CrossRefGoogle ScholarPubMed
Jacobsohn, R. 1994. The broomrape problem in Israel and an integrated approach to its control. Pages 652658 in Pieterse, A. H., Verkleij, J. A. C., and ter Borg, S. J., eds. Biology and Management of Orobanche. Proceedings of the 3rd International Workshop on Orobanche and Related Striga Research. Amsterdam, The Netherlands Royal Tropical Institute.Google Scholar
Joel, D. M., Hershenhorn, Y., Eizenberg, H., Aly, R., Ejeta, G., Rich, P. J., Ransom, J. K., Sauerborn, J., and Rubiales, D. 2006. Biology and management of weedy root parasites. Pages 267349 in Janick, J., ed. Horticultural Reviews. Hokobken, NJ John Wiley & Sons.Google Scholar
Joel, D. M., Kleifeld, Y., Losner-Goshen, D., Herzlinger, G., and Gressel, J. 1995. Transgenic crops against parasites. Nature. 374:4950.Google Scholar
Joel, D. M. and Portnoy, V. 1998. The angiospermous root parasite Orobanche L. (Orobanchaceae) induces expression of a pathogenesis related (PR) gene in susceptible tobacco roots. Ann. Bot. 81:779781.CrossRefGoogle Scholar
Kanai, A. and Natori, S. 1989. Cloning of gene cluster for sarcotoxin I, antibacterial proteins of Sarcophaga peregrina . FEBS Lett. 258:199202.Google Scholar
Kanampiu, F. K., Kabambe, V., Massawe, C., Jasi, L., Friesen, D., Ransom, J. K., and Gressel, J. 2003. Multi-site, multi-season field tests demonstrate that herbicide seed-coating herbicide-resistance maize controls Striga spp. and increases yields in several African countries. Crop Protect. 22:697706.Google Scholar
Labrousse, P., Arnaud, M. C., Seryes, H., Berville, A., and Thalouarn, P. 2001. Several mechanisms are involved in resistance of Helianthus to O. cumana . Ann. Bot. 88:859868.CrossRefGoogle Scholar
Okamoto, M., Mitsuhara, I., Ohshima, M., Natori, S., and Ohashi, Y. 1998. Enhanced expression of an antibiotic peptide sarcotoxin IA by GUS fusion in transgenic tobacco plants. Plant Cell Physiol. 39:5763.CrossRefGoogle ScholarPubMed
Parker, C. and Riches, C. R. 1993. Parasitic Weeds of the World: Biology and Control. Wallingford, UK CAB International. 332 p.Google Scholar
Perez de Luque, A., Fondevilla, S., Perez-Vich, B., et al. 2009. Understanding broomrape: host plant interaction and developing resistance. Weed Res. 49:822.CrossRefGoogle Scholar
Pérez-Vich, D., Akhtouch, B., Knapp, S. J., León, A. J., Velasco, L., Fernández-Martínez, J. M., and Berry, S. T. 2004. Quantitative trait loci for broomrape (Orobanche cumana Wallr.) resistance in sunflower. Theor. Appl. Genet. 109:92102.Google Scholar
Prins, M., Laimer, M., Noris, E., Schubert, J., Wassenegger, M., and Tepfer, M. 2008. Strategies for antiviral resistance in transgenic plants. Mol. Plant Pathol. 9:7383.Google Scholar
Rodríguez-Conde, M. F., Moreno, M. T., Cubero, J. I., and Rubiales, D. 2004. Characterization of the OrobancheMedicago truncatula association for studying early stages of the parasite–host interaction. Weed Res. 44:218223.Google Scholar
Rubiales, D. 2003. Parasitic plants, wild relatives and the nature of resistance. New Phytol. 160:459461.CrossRefGoogle ScholarPubMed
Surov, T., Aviv, D., Aly, R., Joel, D. M., Goldman-Guez, T., and Gressel, J. 1998. Generation of transgenic asulam-resistant potatoes to facilitate eradication of parasitic broomrapes (Orobanche spp.), with the sul gene as the selectable marker. Theor. Appl. Gen. 96:132137.Google Scholar
Tomilov, A. A., Tomilova, N. B., Wroblewski, T., Michelmore, R., and Yoder, J. I. 2008. Trans-specific gene silencing between host and parasitic plants. Plant J. 56:389397.CrossRefGoogle ScholarPubMed
Voinnet, O. 2008. Post-transcriptional RNA silencing in plant-microbe interactions: a touch of robustness and versatility. Curr. Opin. Plant Biol. 11:464470.Google Scholar
Westwood, J. H. 2000. Characterization of the Orobanche-Arabidopsis system for studying parasite–host interactions. Weed Sci. 48:742748.Google Scholar
Westwood, J. H., dePamphilis, C. W., Das, M., Fernandez-Aparicio, M., Honaas, L., Timko, M. P., Wickett, N., and Yoder, J. I. 2011. The parasitic plant genome project: new tools for understanding the biology of Orobanche and Striga . Weed Sci. 60:295306.Google Scholar
Westwood, J. H., Yu, X., Foy, C. L., and Cramer, C. L. 1998. Expression of a defense-related 3-hydroxy-3-methylglutaryl CoA reductase gene in response to parasitism by Orobanche spp. Mol. Plant-Microbe Interact. 11:530536.Google Scholar
Yoder, J. I. 1997. A species-specific recognition system directs haustorium development in the parasitic plant Triphysaria (Scrophulariaceae). Planta. 202:407413.CrossRefGoogle ScholarPubMed
Yoder, J. I., Gunathilake, P., Wu, B., Tomilova, N., and Tomilov, A. A. 2009. Engineering host resistance against parasitic weeds with RNA interference. Pest Manag Sci. 65:460466.Google Scholar