Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-23T22:05:31.531Z Has data issue: false hasContentIssue false

Absorption, translocation, and metabolism of foliar-applied CGA-362622 in purple and yellow nutsedge (Cyperus rotundus and C. esculentus)

Published online by Cambridge University Press:  20 January 2017

Shawn C. Troxler
Affiliation:
Crop Science Department, North Carolina State University, Raleigh, NC 27695-7620
Ian C. Burke
Affiliation:
Crop Science Department, North Carolina State University, Raleigh, NC 27695-7620
W. David Smith
Affiliation:
Crop Science Department, North Carolina State University, Raleigh, NC 27695-7620
Jim Burton
Affiliation:
Horticultural Science Department, North Carolina State University, Raleigh, NC 27695-7609

Abstract

Studies were conducted to evaluate the absorption, translocation, and metabolism of 14C–CGA-362622 when foliar-applied to purple and yellow nutsedge. Less than 53% of the herbicide was absorbed after 96 h. Both nutsedge species translocated appreciable amounts of herbicide (30%) out of treated leaves. Translocation was both acropetal and basipetal, with at least 25% transported basipetally. Neither nutsedge species translocated more than 4% of applied radioactivity to the tubers and roots. Most of the metabolites formed by the nutsedge species were more polar than 14C–CGA-362622 and averaged 69 and 61% of the radioactivity in purple and yellow nutsedge, respectively. The half-life of CGA-362622 was estimated at 4 h in both purple and yellow nutsedge.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Akin, D. S. and Shaw, D. R. 2001. Purple nutsedge (Cyperus rotundus) and yellow nutsedge (Cyperus esculentus) control in glyphosate-tolerant soybean (Glycine max). Weed Technol. 15:564570.Google Scholar
Akobundu, O. I., Bayer, D. E., and Leonard, O. A. 1969. The effects of dichlobenil on assimilate transport in purple nutsedge. Weed Sci. 17:403408.Google Scholar
Askew, S. D. and Wilcut, J. W. 2002. Absorption, translocation, and metabolism of foliar-applied CGA 362622 in cotton (Gossypium hirsutum), peanut (Arachis hypogaea), and selected weeds. Weed Sci. 50:293298.Google Scholar
Bariuan, J. V., Reddy, K. N., and Wills, G. D. 1999. Glyphosate injury, rainfastness, absorption, and translocation in purple nutsedge (Cyperus rotundus). Weed Technol. 13:112119.Google Scholar
Bendixen, L. D. and Stroube, F. W. 1977. Yellow and purple nutsedge: two weed species of worldwide significance. Weeds Today 9:915.Google Scholar
Brecke, B. J., Bridges, D. C., and Grey, T. 2000. CGA 362622 for postemergence weed control in cotton. Proc. South. Weed Sci. Soc. 53:2627.Google Scholar
Brown, H. M. and Neighbors, S. M. 1987. Soybean metabolism of chlorimuron ethyl: physiological basis for soybean selectivity. Pestic. Biochem. Physiol. 29:112120.Google Scholar
Dayan, F. E., Green, H. M., Weete, J. D., and Hancock, H. G. 1996. Postemergence activity of sulfentrazone: effects of surfactants and leaf surfaces. Weed Sci. 44:797803.Google Scholar
Dowler, C. C. 1998. Weed survey—southern states, broadleaf crops subsection. Proc. South. Weed Sci. Soc. 48:290305.Google Scholar
Eberlein, C. V., Guttieri, M. J., Berger, P. H., Fellman, J. K., Mallory-Smith, C. A., Thill, D. C., Baerg, R. J., and Belknap, W. R. 1999. Physiological consequences of mutation for ALS-inhibitor resistance. Weed Sci. 47:383392.CrossRefGoogle Scholar
Gallaher, K., Mueller, T. C., Hayes, R. M., Schwartz, O., and Barrett, M. 1999. Absorption, translocation, and metabolism of primisulfuron and nicosulfuron in broadleaf signalgrass (Brachiaria platyphylla) and corn. Weed Sci. 47:812.Google Scholar
Gerwick, B. C., Mirles, L. C., and Eilers, R. J. 1993. Rapid diagnosis of ALS/AHAS-resistant weeds. Weed Technol. 7:519524.Google Scholar
Green, J. M. and Ulrich, J. F. 1993. Response of corn (Zea mays L.) inbreds and hybrids to sulfonylurea herbicides. Weed Sci. 41:508516.Google Scholar
Hageman, L. H. and Behrens, R. 1984. Basis for response differences of two broadleaf weeds to chlorsulfuron. Weed Sci. 32:162167.Google Scholar
Hodges, C. C., De Boer, G. J., and Avalos, J. 1990. Uptake and metabolism as mechanisms of selective herbicidal activity of the 1,2,4-triazolo[1,5α] pyrimidines. Pestic. Sci. 29:365378.Google Scholar
Holloway, J. C. Jr., Wells, J. W., Hudetz, M., et al. 2000. CGA-362622 application timing, rates, and weed spectrum in cotton. Proc. South. Weed Sci. Soc. 53:240.Google Scholar
Holm, L. G., Plucknett, D. L., Pancho, A. V., and Herberger, J. P. 1977. The World's Worst Weeds, Distribution and Biology. Honolulu, HI: Hawaii University Press. pp. 824, 125–138.Google Scholar
Hudetz, M., Foery, W., Wells, J., and Soares, J. E. 2000. CGA 362622, a new low rate Novartis post-emergent herbicide for cotton and sugarcane. Proc. South. Weed Sci. Soc. 53:163166.Google Scholar
Lycan, D. W. and Hart, S. E. 1999. Physiological response of soybean (Glycine max) and two weed species to thifensulfuron and bentazon combinations. Weed Sci. 47:143148.Google Scholar
McIntosh, M. S. 1983. Analysis of combined experiments. Agron. J. 75:153155.Google Scholar
McLean, H. S., Richburg, J. S. III, Wilcut, J. W., and Smith, A. E. 2001. Influence of norflurazon placement on yellow nutsedge (Cyperus esculentus). Weed Technol. 15:327331.Google Scholar
Moreland, D. E., Fleischmann, T. J., Corbin, F. T., and McFarland, J. E. 1996. Differential metabolism of the sulfonylurea herbicide prosulfuron (CGA-152005) by plant microsomes. Z. Naturforsch. 51:698710.CrossRefGoogle Scholar
Nandihalli, U. B. and Bendixen, L. E. 1988. Absorption, translocation, and toxicity of foliar-applied imazaquin in yellow and purple nutsedge (Cyperus esculentus and C. rotundus). Weed Sci. 36:313317.Google Scholar
Neighbors, S. and Privalle, L. S. 1990. Metabolism of primisulfuron by barnyardgrass. Pestic. Biochem. Physiol. 37:145153.Google Scholar
Newsom, L. J., Shaw, D. R., and Hubbard, T. F. Jr. 1993. Absorption, translocation, and metabolism of AC 263,222 in peanut (Arachis hypogaea), soybean (Glycine max), and selected weeds. Weed Sci. 41:523527.Google Scholar
Petersen, P. J. and Swisher, B. A. 1985. Absorption, translocation, and metabolism of 14C-chlorsulfuron in Canada thistle (Cirsium arvense). Weed Sci. 33:711.Google Scholar
Porterfield, D., Wilcut, J. W., and Askew, S. D. 2002a. Weed management with CGA-362622, fluometuron, and prometryn in cotton. Weed Sci. 50:642647.Google Scholar
Porterfield, D., Wilcut, J. W., Clewis, S. B., and Edmisten, K. L. 2002b. Weed-free yield response of seven cotton (Gossypium hirsutum) cultivars to CGA-362622 postemergence. Weed Technol. 16:180183.CrossRefGoogle Scholar
Reddy, K. N. and Bendixen, L. E. 1988. Toxicity, absorption, translocation, and metabolism of foliar-applied chlorimuron in yellow and purple nutsedge (Cyperus esculentus and C. rotundus). Weed Sci. 36:707712.Google Scholar
Richburg, J. S. III, Wilcut, J. W., and Wehtje, G. R. 1993. Toxicity of imazethapyr to purple nutsedge (Cyperus rotundus) and yellow nutsedge (C. esculentus). Weed Technol. 7:900905.CrossRefGoogle Scholar
Richburg, J. S. III, Wilcut, J. W., and Wehtje, G. R. 1994. Toxicity of AC 263,222 to purple nutsedge (Cyperus rotundus) and yellow nutsedge (C. esculentus). Weed Sci. 42:398402.Google Scholar
Shaner, D. L. and Robson, P. A. 1985. Absorption, translocation, and metabolism of AC 252 214 in soybean (Glycine max), common cocklebur (Xanthium strumarium), and velvetleaf (Abutilon theophrasti). Weed Sci. 33:469471.Google Scholar
Sprankle, P., Meggitt, W. F., and Penner, D. 1975. Absorption, action, and translocation of glyphosate. Weed Sci. 23:235240.Google Scholar
Stoller, E. W. and Sweet, R. D. 1987. Biology and life cycle of purple and yellow nutsedge (Cyperus rotundus and C. esculentus). Weed Technol. 1:6673.Google Scholar
Troxler, S. C., Wilcut, J. W., Burke, I. C., and Smith, W. D. 2002. Yellow and purple nutsedge control with cotton herbicides. Weed Sci. Soc. Am. Abstr. 42:5.Google Scholar
Vencill, W. K. 1998. Uptake, translocation, and metabolism of pyrithiobacsodium in yellow nutsedge. Proc. South. Weed Sci. Soc. 53:208.Google Scholar
Wells, J. W., Hudetz, M., Holloway, J. C. Jr., Rawls, E. K., Forster, P. C., and Dunne, C. L. 2000. Introduction to CGA 362622: a new postemergence herbicide from Novartis. Proc. Beltwide Cotton Conf. 2:1459.Google Scholar
Wilcut, J. W. 1998. Influence of pyrithiobac sodium on purple (Cyperus rotundus) and yellow nutsedge (C. esculentus). Weed Sci. 46:111115.Google Scholar
Wilcut, J. W., Wehtje, G. R., Patterson, M. G., Cole, T. A., and Hicks, T. V. 1989. Absorption, translocation, and metabolism of foliar-applied chlorimuron in soybeans (Glycine max), peanuts (Arachis hypogaea), and selected weeds. Weed Sci. 37:175180.Google Scholar
Wilcut, J. W., York, A. C., and Jordan, D. L. 1995. Weed management programs for oil seed crops. Pages 343400 In Smith, A. E., ed. Handbook of Weed Management Programs. New York: Marcel Dekker.Google Scholar
York, A. C. 1994. Nutsedge management in cotton. Proc. Beltwide Cotton Conf. 3:1698.Google Scholar