Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-19T09:15:26.022Z Has data issue: false hasContentIssue false

Weed Control and Herbicide Tolerance in a Common Vetch-Oat Intercrop

Published online by Cambridge University Press:  12 June 2017

Rafael Caballero
Affiliation:
Finca Experimental La Poveda. CCMA (CSIC). Ctra. de Campo Real km 0.300. 28500 Arganda del Rey, Madrid, Spain
Carmen Barro
Affiliation:
Finca Experimental La Poveda. CCMA (CSIC). Ctra. de Campo Real km 0.300. 28500 Arganda del Rey, Madrid, Spain
Carmen Alzueta
Affiliation:
Finca Experimental La Poveda. CCMA (CSIC). Ctra. de Campo Real km 0.300. 28500 Arganda del Rey, Madrid, Spain
Mercedes Arauzo
Affiliation:
Finca Experimental La Poveda. CCMA (CSIC). Ctra. de Campo Real km 0.300. 28500 Arganda del Rey, Madrid, Spain
Pedro J. Hernaiz
Affiliation:
Finca Experimental La Poveda. CCMA (CSIC). Ctra. de Campo Real km 0.300. 28500 Arganda del Rey, Madrid, Spain

Abstract

Field studies were conducted over 3 yr in central Spain to investigate the tolerance of common vetch and oat to some preemergence herbicides and their effects on weed control, forage yields, and botanical composition of the forage mixture. Pendimethalin was the only herbicide that injured common vetch. Pronamide and pronamide plus diuron injured oat by affecting plant emergence. Prevalent weed species were fumitory, henbit, and wild buckwheat. All herbicides provided more than 90% control of fumitory and most herbicides except pronamide provided more than 90% control of henbit relative to the untreated check. Wild buckwheat stands were reduced by isoxaben (68%), linuron (40%), prometryn (69%), pronamide (86%), and pronamide plus diuron (61%). More than 90% control of prostrate knotweed was achieved with isoxaben, pronamide, and terbutryn. Pronamide and pronamide plus diuron reduced forage yields and increased vetch in the forage. The untreated vetch and oat monocrop treatments showed the competitive advantage of oat over vetch and weedy species.

Type
Weed Management
Copyright
Copyright © 1995 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

1. Ahmad, S., Ahmad, I., Barraras, M., and Gill, M. A. 1984. Effect of row spacing and weed control on growth and yield of wheat. J. Agr. Res., Pakistan. 22:113117.Google Scholar
2. Anderson, L. 1983. Stomp(R) (pendimethalin)—a new broad spectrum herbicide. 24th Swedish Weed Conf. Uppsala 1:106116.Google Scholar
3. Anderson, W. P. and Hoxworth, G. 1985. Pendimethalin and oxyfluorfen for selective weed control in seeded onions. Proc. Western Soc. Weed Sci. 38:196201.Google Scholar
4. Bhomic, P. C. 1988. Cinmethylin for weed control in soybeans, Glycine max . Weed Sci. 36:678682.Google Scholar
5. Brown, J. C., Eke, K.H.R., and Taylor, P. N. 1991. Pendimethalin/prometryn—a new coformulation for weed control in peas and beans. Aspects of Appl. Biology 27:393396.Google Scholar
6. Bychko, M. F. 1985. Effectiveness of annual fodder crops as preceding crops for spring wheat in the forest steppe of Priangarye. Sibirski Vestnik Sel'skokozjaistvennoi Nauki No 6, pp. 1219.Google Scholar
7. Caballero, R. 1985. Integration of annual legumes into the agricultural systems of Central Spain. 2nd Castile-La Mancha Livestock Prod. Conf. Guadalajara, pp. 205251.Google Scholar
8. Caballero, R. and Goicoechea, E. L. 1986. Utilization of winter cereals as companion crops for common vetch and hairy vetch. Proc. 11th Gen. Meeting Eur. Grassland Fed. pp. 379384. Troia, Portugal.Google Scholar
9. Caballero, R., Alzueta, C., Barro, C., Arauzo, M., and Hernaiz, P. J. 1992. Chemical control of annual weeds in field beans (Vicia faba) in Central Spain. Weed Sci. 40:96100.Google Scholar
10. Caballero, R. 1993. An experts' survey on the role of legumes in arable cropping systems of the Mediterranean area. J. Sustainable Agric. 3:133154.Google Scholar
11. Carlson, W. C., Lignowski, E. M., and Hopen, H. J. 1975. Uptake, translocation and adsorption of pronamide. Weed Sci. 23:148154.Google Scholar
12. Droushiotis, D. N. 1989. Mixtures of annual legumes and small-grained cereals for forage production under low rainfall. J. Agric. Sci. (Camb.) 113:249253.Google Scholar
13. Dumont, R. and Debrand, M. 1979. Weed control trials in peas, field beans, vetch and lupins. Compte Rendue de la 10e Conference du COLUMA, pp. 409420.Google Scholar
14. Dumont, R. and Serpeille, A. 1981. Weed control trials in peas, field beans, vetch and lupins. Compte Rendue de la 11e Conference du COLUMA, pp. 379389.Google Scholar
15. Dutt, T. E. and Harvey, R. G. 1980. Pronamide phytotoxicity in ten Wisconsin soils. Weed Sci. 28:429432.Google Scholar
16. El-Deek, M. H. and Hess, F. D. 1986. Inhibited mitotic entry is the cause of growth inhibition by cinmethylin. Weed Sci. 34:684688.Google Scholar
17. Hadjayed, M. 1992. Rendements, composition chimique et digestibilité des monocultures et des bicultures de l'avoine et des legumineuses fourrageres annuelles durant la phase de maturation du grain. MS Thesis. Int. Cent. for Advances Mediterranean Agronomic Studies. CIHEAM. 145 p. Zaragoza.Google Scholar
18. Hadjichristodoulou, A. 1978. Genotype, environment and rainfall effects on common vetch varieties in a semiarid region. Exp. Agr. 14:8187.Google Scholar
19. Hall, C., Edgington, L. V., and Switzer, C. M. 1982. Translocation of different 2,4-D, bentazon, diclofop or diclofop-methyl combinations in oat (Avena sativa) and soybean (Glycine max). Weed Sci. 30:676682.Google Scholar
20. Hobson, G. P. and Ryan, P. J. 1987. Terbuthylazine plus isoxaben for weed control in peas. Proc. British Crop Protec. Conf. 3:851856.Google Scholar
21. Khan, S. U., Marriage, P. B., and Saidak, W. J. 1976. Persistence and movement of diuron and 3,4-dichloroaniline in an orchard soil. Weed Sci. 24:583586.Google Scholar
22. Malik, R. K., Balyan, R. S., and Bhan, V. M. 1988. Effects of surfactants in the efficacy of some post-emergence grass herbicides. Haryana Agric. Un. J. Res. 18:276283.Google Scholar
23. O'Donovan, J. T. and Prendeville, G. N. 1976. Interactions between soil-applied herbicides in the roots of some legume species. Weed Res. 16:331336.Google Scholar
24. Papastylianou, I. 1990. Response of pure stands and mixtures of cereal and legumes to nitrogen fertilization and residual effects on subsequent barley. J. Agric. Sci. (Camb.) 115:1522.CrossRefGoogle Scholar
25. Rioux, R. 1974. Actions of metribuzin on barnyard grass and potatoes var. Kennebec . Phytoprotection 55:115120.Google Scholar
26. Roberts, C. A., Moore, K. L., and Johnson, K. D. 1989. Forage quality and yields of wheat-vetch at different stages of maturity and vetch seeding rates. Agron. J. 81:5760.Google Scholar
27. Somody, C. N., Nalewaja, J. D., and Miller, S. D. 1984. Wild oat (Avena fatua) and Avena sterilis morphological characteristics and response to herbicides. Weed Sci. 32:353359.Google Scholar
28. Tate, M. E. and Enneking, D. 1992. A mess of red pottage. Nature 359:357358.Google Scholar
29. Thomson, E. F. and Bahhady, F. A. 1992. On-farm evaluation of pasture and feed legume crops for increasing sheep production in cereal-based farming systems of West Asia. Page 219224 in Livestock in the Mediterranean cereal production systems, Guessous, F., Kabbali, A., and Narjisse, H., eds. Pudoc Scientific Pubis., Wageningen, The Netherlands.Google Scholar