Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-27T10:00:03.506Z Has data issue: false hasContentIssue false

Trichothecene inhibitors of Striga hermonthica germination produced by Fusarium solani

Published online by Cambridge University Press:  20 January 2017

Nafisa E. Ahmed
Affiliation:
Agricultural Research Corporation, P.O. Box 126, Wad Medani, Sudan
Norifumi Yasuda
Affiliation:
Arid Land Research Center, Tottori University, 1390 Hamasaka, Tottori 680-0001, Japan
Shinobu Inanaga
Affiliation:
Arid Land Research Center, Tottori University, 1390 Hamasaka, Tottori 680-0001, Japan

Abstract

Metabolites of the fungus Fusarium solani (Sud 96) inhibited Striga hermonthica germination induced by the germination stimulant GR24. The active principles were identified as trichothecenes acuminatin, neosolaniol, 8-acetylneosolaniol, and tetraacetoxy T-2 tetraol (neosolaniol diacetate) on the basis of their chromatographic behavior and nuclear magnetic resonance and mass spectra. Inhibitory activity of the four trichothecenes against Striga germination increased with acetylation of the hydroxyl moieties. The most abundant inhibitor produced by the fungus, 8-acetylneosolaniol, completely inhibited Striga germination at 24 μM. The fungal toxin did not affect the germination of sorghum, a host crop, but retarded root and shoot elongation of the seedlings by 60 and 30%, respectively, at the same concentration.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abbas, H. K., Boyette, C. D., Hoagland, R. E., and Vesonder, R. F. 1991. Bioherbicidal potential of Fusarium moniliforme and its phytotoxin, fumonisin. Weed Sci. 39:673677.Google Scholar
Abbasher, A. A. and Sauerborn, J. 1992. Fusarium nygamai, a potential bioherbicide for Striga hermonthica control in sorghum. Biol. Control 2:291296.Google Scholar
Ahmed, N. E., Sugimoto, Y., Babiker, A.G.T., Ma, Y., Inanaga, S., and Nakajima, H. 2001. Effects of Fusarium solani isolates and metabolites on Striga germination. Weed Sci. 49:354358.CrossRefGoogle Scholar
Amsellem, Z., Kleifeld, Y., Kerenyi, Z., Hornok, L., Goldwasser, Y., and Gressel, J. 2001. Isolation, identification, and activity of mycoherbicidal pathogens from juvenile broomrape plants. Biol. Control 21:274284.CrossRefGoogle Scholar
Babiker, A.G.T., Hamdoun, A. M., Rudwan, A., Mansi, N. G., and Faki, H. H. 1987. Influence of soil moisture on activity and persistence of the strigol analogue GR24. Weed Res. 27:173178.Google Scholar
Berner, D., Carsky, R., Dashiell, K., Kling, J., and Manyong, V. 1996. A land management based approach to integrated Striga hermonthica control in sub-Saharan Africa. Outlook Agric. 25:157164.Google Scholar
Berner, D. K., Kling, J. G., and Singh, B. B. 1995. Striga research and control. Plant Dis. 79:652660.Google Scholar
Berner, D. K., Schaad, N. W., and Völksch, B. 1999. Use of ethyleneproducing bacteria for stimulation of Striga spp. seed germination. Biol. Control 15:274282.Google Scholar
Butler, L. G. 1995. Chemical communication between the parasitic weed Striga and its crop host. A new dimension in allelochemistry. Pages 158168 In Inderjit, , Dakshini, K.M.M., and Einhellig, F. A., eds. Allelopathy, Organisms, Processes, and Applications. Washington, DC: American Chemical Society.Google Scholar
Ciotola, M., Watson, A. K., and Hallett, S. G. 1995. Discovery of an isolate of Fusarium oxysporum with potential to control Striga hermonthica in Africa. Weed Res. 35:303309.CrossRefGoogle Scholar
Cole, R. J., Dorner, J. W., Gilbert, J., Mortimer, D. N., Crews, C., Mitchell, J. C., Windingstad, R. M., Nelson, P. E., and Cutler, H. G. 1988. Isolation and identification of trichothecenes from Fusarium compactum suspected in the aetiology of a major intoxication of sandhill cranes. J. Agric. Food Chem. 36:11631167.Google Scholar
Ishii, K., Pathre, S. V., and Mirocha, C. J. 1978. Two new trichothecenes produced by Fusarium roseum . J. Agric. Food Chem. 26:649653.Google Scholar
Jiménez, M. and Mateo, R. 1997. Determination of mycotoxins produced by Fusarium isolates from banana fruits by capillary gas chromatography and high performance liquid chromatography. J. Chromatogr. A 778:363372.Google Scholar
Lansden, J. A., Cole, R. J., Dorner, J. W., Cox, R. H., Cutler, H. G., and Clark, J. D. 1978. A new trichothecene mycotoxin isolated from Fusarium tricinctum . J. Agric. Food Chem. 26:246249.CrossRefGoogle ScholarPubMed
Parker, C., Hitchcock, A. M., and Ramaiah, K. V. 1977. The germination of Striga species by crop root exudates; techniques for selecting resistant crop cultivars. Pages 6774 In Proceedings of the Asian-Pacific Weed Science Society 6th Conference. Jakarta, Indonesia: Asia-Pacific Weed Science Society.Google Scholar
Press, M. C. and Gurney, A. L. 2000. Plant eats plant: sap-feeding witchweeds and other parasitic angiosperms. Biologist 47:189193.Google ScholarPubMed
Salih, A. A., Ali, I. A., Lux, A., Luxova, M., Cohen, Y., Sugimoto, Y., and Inanaga, S. 1999. Rooting, water uptake, and xylem structure adaptation to drought of two sorghum cultivars. Crop Sci. 39:168173.CrossRefGoogle Scholar
Visconti, A., Mirocha, C. J., Logrieco, A., Bottalico, A., and Solfrizzo, M. 1989. Mycotoxins produced by Fusarium acuminatum . Isolation and characterization of acuminatin: a new trichothecene. J. Agric. Food Chem. 37:13481351.Google Scholar
Zonno, M. C. and Vurro, M. 1999. Effect of fungal toxins on germination of Striga hermonthica seeds. Weed Res. 39:1520.Google Scholar