Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T16:45:35.312Z Has data issue: false hasContentIssue false

The role of weeds in nematode management

Published online by Cambridge University Press:  20 January 2017

Jill Schroeder
Affiliation:
Department of Entomology, Plant Pathology and Weed Science, New Mexico State University, Las Cruces, NM 88003-8003
Leigh W. Murray
Affiliation:
University Statistics Center, New Mexico State University, Las Cruces, NM 88003-0003

Abstract

Weeds are alternative hosts for plant-parasitic nematodes and have long been recognized for their ability to maintain nematode populations targeted for suppression by various management strategies. The impact of weeds as alternative hosts depends largely on nematode feeding behavior, which is determined by the level of host specialization required for the parasite to feed successfully. In general, the more specialized feeding adaptations are associated with greater crop damage, more diverse nematode management options, and greater negative impact from weeds. Besides serving as alternative hosts, certain weeds can protect nematodes from pesticides and the environment, provide nematode suppression through antagonism, contribute to changes in future nematode biotic potential, or exert indirect effects through competition with crops or by the effects of weed control strategies on nematode populations. Shrinking nematicide options and increasing environmental concerns are making integrated pest management (IPM) a necessity for nematode management in many crops. A prominent similarity between most major weeds and plant-parasitic nematodes is that both are place-bound organisms that are passively dispersed. Weed–nematode interactions in agricultural production systems may be more intricate and complex than the simple function of weeds as alternative hosts. Their relationship may represent a normal adaptation resulting from the limited mobility of both groups of organisms and the obligate parasitism of phytophagous nematodes. The challenge that faces weed scientists and nematologists is to identify effective, compatible IPM strategies that address weed and nematode management collectively.

Type
Symposium
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abawi, G. S. and Chen, J. 1998. Concomitant pathogen and pest interactions. Pages 135158 in Barker, K. R., Pederson, G. A., and Windham, G. L. eds. Plant and Nematode Interactions. Agronomy Monograph 36. Madison, WI: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America.Google Scholar
Alston, D. G., Schmitt, D. P., Bradley, J. R. Jr., and Coble, H. D. 1993. Multiple pest interactions in soybean: effects on Heterodera glycines egg populations and crop yield. J. Nematol 25:4249.Google Scholar
Baird, S. M. and Bernard, E. C. 1984. Nematode population and community dynamics in soybean–wheat cropping and tillage regimes. J. Nematol 16:379386.Google Scholar
Belair, G. and Benoit, D. L. 1996. Host suitability of 32 common weeds to Meloidogyne hapla in organic soils in southwestern Quebec. Suppl. J. Nematol 28:643647.Google Scholar
Belair, G. and Parent, L. E. 1996. Using crop rotation to control Meloidogyne hapla Chitwood and improve marketable carrot yield. Hortscience 31:106108.Google Scholar
Bendixen, L. E. 1988a. A comparative summary of the weed hosts of Heterodera, Meloidogyne, and Pratylenchus nematodes. Special Circular 118. Wooster, OH: Ohio State University Ohio Agricultural Research and Development Center. 33 p.Google Scholar
Bendixen, L. E. 1988b. Major weed hosts of nematodes in crop production. Special Circular 119. Wooster, OH: Ohio State University Ohio Agricultural Research and Development Center. 22 p.Google Scholar
Bendixen, L. E. 1988c. Weed hosts of Heterodera, the cyst, and Pratylenchus, the root-lesion, nematodes. Special Circular 117. Wooster, OH: Ohio State University Ohio Agricultural Research and Development Center. 52 p.Google Scholar
Bird, G. W. and Hogger, C. H. 1973. Nutsedges as hosts of plant-parasitic nematodes in Georgia cotton fields. Plant Dis. Rep 57:402.Google Scholar
Bockenhoff, A., Prior, D. A. M., Grundler, F. M. W., and Oparka, K. J. 1996. Induction of phloem unloading in Arabidopsis thaliana roots by the parasitic nematode Heterodera schachtii . Plant Physiol 112:14211427.Google Scholar
Bostian, A. L., Schmitt, D. P., and Barker, K. R. 1984. In vitro hatch and survival of Heterodera glycines as affected by alachlor and phenamiphos. J. Nematol 16:2226.Google Scholar
Browde, J. A., Tylka, G. L., Pedigo, L. P., and Owen, M. D. K. 1994. Responses of Heterodera glycines populations to a postemergence herbicide mixture and simulated insect defoliation. J. Nematol 26:498504.Google Scholar
Caswell-Chen, E. P., Ferris, H., Westerdahl, B. B., and Sloan, R. L. 1995. A PC/MAC-platform database on the host status of crop and weed species to plant-parasitic nematodes. Nematol. Newsl 41:78. Also available at http://ucdnema.ucdavis.edu/Tango/Tango.acgi$/Tutorial/INTERACT.QRY?function=form. Accessed October 23, 2003.Google Scholar
Chitwood, D. J. 2002. Phytochemical based strategies for nematode control. Annu. Rev. Phytopathol 40:221249.CrossRefGoogle ScholarPubMed
De Waele, D. and Elsen, A. 2002. Migratory endoparasites: Pratylenchus and Radopholus species. Pages 175206 in Starr, J. L., Cook, R., and Bridge, J. eds. Plant Resistance to Parasitic Nematodes. Wallingford, U.K.: CABI International.Google Scholar
Duncan, L. W. 1991. Current options for nematode management. Annu. Rev. Phytopathol 29:469490.CrossRefGoogle ScholarPubMed
Duncan, L. W. and Noling, J. W. 1998. Agricultural sustainability and nematode integrated pest management. Pages 251287 in Barker, K. R., Pederson, G. A., and Windham, G. L. eds. Plant and Nematode Interactions. Agronomy Monograph 36. Madison, WI: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America.Google Scholar
Ferris, J. M. and Ferris, V. R. 1998. Biology of plant-parasitic nematodes. Pages 2135 in Barker, K. R., Pederson, G. A., and Windham, G. L. eds. Plant and Nematode Interactions. Agronomy Monograph 36. Madison, WI: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America.Google Scholar
Gallaher, R. N. and McSorley, R. 1993. Population densities of Meloidogyne incognita and other nematodes following seven cultivars of cowpea. Nematropica 23:2126.Google Scholar
Goodey, J. B., Franklin, M. T., and Hooper, D. J. 1965. The Nematode Parasites of Plants Catalogued under their Hosts. Farnham Royal, U.K.: Commonwealth Agricultural Bureaux. 214 p.Google Scholar
Griffin, G. D. 1982. Differences in the response of certain weed host populations to Heterodera schachtii . J. Nematol 14:174182.Google Scholar
Hogger, C. H. and Bird, G. W. 1976. Weed and indicator hosts of plant-parasitic nematodes in Georgia cotton and soybean fields. Plant Dis. Rep 60:223226.Google Scholar
Huang, J. 1985. Mechanisms of resistance to root-knot nematodes. Pages 165174 in Sasser, J. N. and Carter, C. C. eds. An Advanced Treatise on Meloidogyne. Volume I. Raleigh, NC: North Carolina State University Graphics.Google Scholar
Hussey, R. S. and Williamson, V. M. 1998. Physiological and molecular aspects of nematode parasitism. Pages 87108 in Barker, K. R., Pederson, G. A., and Windham, G. L. eds. Plant and Nematode Interactions. Agronomy Monograph 36. Madison, WI: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America.Google Scholar
Ingham, R. E., Trofymow, J. A., Ingham, E. R., and Coleman, D. C. 1985. Interactions of bacteria, fungi, and their nematode grazers: effects on nutrient cycling and plant growth. Ecol. Monogr 55:119140.Google Scholar
Inserra, R. N., Griffin, G. D., and Anderson, J. L. 1985. The false root-knot nematode Nacobbus aberrans. Bulletin 510. Logan, UT: Utah Agricultural Experiment Station. 14 p.Google Scholar
Jordaan, E. M. and De Waele, D. 1988. Host status of five weed species and their effects on Pratylenchus zeae infestation of maize. J. Nematol 20:620624.Google Scholar
Koenning, S. R., Overstreet, C., Noling, J. W., Donald, P. A., Becker, J. O., and Fortnum, B. A. 1999. Survey of crop losses in response to phytoparasitic nematodes in the United States for 1994. Suppl. J. Nematol 31:587618.Google Scholar
Levene, B. C., Owen, M. D. K., and Tylka, G. L. 1998. Response of soybean cyst nematodes and soybeans (Glycine max) to herbicides. Weed Sci 46:264270.Google Scholar
McClure, M. A. 1977. Meloidogyne incognita: a metabolic sink. J. Nematol 9:8890.Google Scholar
McSorley, R. 1998. Alternative practices for managing plant-parasitic nematodes. Am. J. Altern. Agric 13:98104.Google Scholar
McSorley, R., Dickson, D. W., de Brito, J. A., and Hochmuth, R. C. 1994. Tropical rotation crops influence nematode densities and vegetable yields. J. Nematol 26:308314.Google Scholar
Melakeberhan, H. and Ferris, H. 1988. Growth and energy demand of Meloidgyne incognita on susceptible and resistant Vitis vinifera cultivars. J. Nematol 20:545554.Google Scholar
Niles, R. K. and Freckman, D. W. 1998. From the ground up: nematode ecology in bioassessment and ecosystem health. Pages 6585 in Barker, K. R., Pederson, G. A., and Windham, G. L. eds. Plant and Nematode Interactions. Agronomy Monograph 36. Madison, WI: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America.Google Scholar
Noe, J. P. 1998. Crop- and nematode-management systems. Pages 159171 in Barker, K. R., Pederson, G. A., and Windham, G. L. eds. Plant and Nematode Interactions. Agronomy Monograph 36. Madison, WI: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America.Google Scholar
Noe, J. P., Sasser, J. N., and Imbriani, J. L. 1991. Maximizing the potential of cropping systems for nematode management. J. Nematol 23:353361.Google Scholar
Norris, R. F., Caswell-Chen, E. P., and Kogan, M. 2003. Concepts in Integrated Pest Management. Upper Saddle River, NJ: Prentice Hall. 586 p.Google Scholar
Norton, D. C. 1978. Ecology of Plant-Parasitic Nematodes. New York: Wiley Interscience. 268 p.Google Scholar
O'Bannon, J. H., Santo, G. S., and Nyczepir, A. P. 1982. Host range of the Columbia root-knot nematode. Plant Dis 66:10451048.Google Scholar
Omidvar, A. M. 1962. The nematicidal effects of Tagetes spp. on the final population of Heterodera rostochiensis Woll. Nematologica 7:6264.Google Scholar
Parmelee, R. W. and Alston, D. G. 1986. Nematode trophic structure in conventional and no-tillage agroecosystems. J. Nematol 18:403407.Google Scholar
Perry, R. N. and Beane, J. 1989. Effects of certain herbicides on the in vitro hatch of Globodera rostochiensis and Heterodera schachtii . Rev. Nematol 12:191196.Google Scholar
Riggs, R. D. 1992. Host range. Pages 107114 in Riggs, R. D. and Wrather, J. A. eds. Biology and Management of the Soybean Cyst Nematode. St. Paul, MN: APS.Google Scholar
Riggs, R. D. and Oliver, L. R. 1982. Effect of trifluralin (Treflan) on soybean cyst nematode. J. Nematol 14:466.Google Scholar
Roberts, P. A. 1993. The future of nematology: integration of new and improved management strategies. J. Nematol 25:383394.Google Scholar
Robinson, A. F., Inserra, R. N., Caswell-Chen, E. P., Volvas, N., and Troccoli, A. 1997. Rotylenchulus species: Identification, distribution, host ranges, and crop plant resistance. Nematropica 27:127180.Google Scholar
Rowe, R. C., Riedel, R. M., and Martin, M. J. 1985. Synergistic interactions between Verticillium dahliae and Pratylenchus penetrans in potato early dying disease. Phytopathology 75:412418.Google Scholar
Sasser, J. N. and Freckman, D. W. 1987. A world perspective on nematology: the role of the society. Pages 714 in Veech, J. A. and Dickson, D. W. eds. Vistas on Nematology. Hyattsville, MD: Society of Nematologists.Google Scholar
Schmitt, D. P., Corbin, F. T., and Nelson, L. A. 1983. Population dynamics of Heterodera glycines and soybean response in soils treated with selected nematicides and herbicides. J. Nematol 15:432437.Google Scholar
Schroeder, J., Kenney, M. J., Thomas, S. H., and Murray, L. 1994. Yellow nutsedge response to southern root-knot nematodes, chile peppers, and metolachlor. Weed Sci 42:534540.Google Scholar
Schroeder, J., Thomas, S. H., and Murray, L. 1993. Yellow and purple nutsedge and chile peppers host southern root-knot nematode. Weed Sci 41:150156.CrossRefGoogle Scholar
Schroeder, J., Thomas, S. H., and Murray, L. W. 1999. Yellow (Cyperus esculentus) and purple nutsedge (Cyperus rotundus) are not injured by increasing root-knot nematode (Meloidogyne incognita) population density. Weed Sci 47:201207.Google Scholar
Schroeder, J., Thomas, S. H., and Murray, L. W. 2004. Root-knot nematodes affect annual and perennial weed interactions with chile pepper. Weed Sci 52:2846.Google Scholar
Schroeder, J., Thomas, S. H., and Murray, L. W. 2005. Impacts of crop pests on weeds. Weed Sci 53:918922.Google Scholar
Sijmons, P. C., Atkinson, H. J., and Wyss, U. 1994. Parasitic strategies of root nematodes and associated host cell responses. Annu. Rev. Phytopathol 32:235259.CrossRefGoogle Scholar
Sipes, B. S. and Schmitt, D. P. 1989. Development of Heterodera glycines as affected by alachlor and fenamiphos. J. Nematol 21:2432.Google ScholarPubMed
Starr, J. L., Bridge, J., and Cook, R. 2002. Resistance to plant-parasitic nematodes: history, current use and future potential. Pages 122 in Starr, J. L., Cook, R., and Bridge, J. eds. Plant Resistance to Parasitic Nematodes. Wallingford, England: CAB International.Google Scholar
Stirling, G. R. 1991. Biological Control of Plant Parasitic Nematodes. Wallingford, England: CAB International. 282 p.Google Scholar
Thomas, S. H. 1976. Population fluctuations of plant parasitic nematodes under different tillage systems in corn. . Iowa State University, Ames, IA. 90 p.Google Scholar
Thomas, S. H., Schroeder, J., Kenney, M. J., and Murray, L. W. 1997. Meloidogyne incognita inoculum source affects host suitability and growth of yellow nutsedge and chile pepper. J. Nematol 29:404410.Google Scholar
Thomas, S. H., Schroeder, J., and Murray, L. W. 2004. Cyperus tubers protect Meloidogyne incognita from 1,3-dichloropropene. J. Nematol 36:131136.Google Scholar
Townshend, J. L. and Davidson, T. R. 1962. Some weed hosts of the northern root-knot nematode Meloidogyne hapla Chitwoodi, 1949, in Ontario. Can. J. Bot 40:543547.Google Scholar
Westcott, S. W. III and Hussey, R. S. 1992. Feeding behavior of Criconemella xenoplax in monoxenic culture. Phytopathology 82:936940.Google Scholar
Widmer, T. L., Mitkowski, N. A., and Abawi, G. S. 2002. Soil organic matter and management of plant-parasitic nematodes. J. Nematol 34:289295.Google Scholar
Yeates, G. W., Wardle, D. A., and Watson, R. N. 1993. Relationships between nematodes, soil microbial biomass and weed-management strategies in maize and asparagus cropping systems. Soil Biol. Biochem 25:869876.CrossRefGoogle Scholar