Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-24T01:48:19.805Z Has data issue: false hasContentIssue false

A review of the biology and ecology of Florida beggarweed (Desmodium tortuosum)

Published online by Cambridge University Press:  20 January 2017

John Cardina
Affiliation:
Department of Horticulture and Crop Sciences, Ohio State University, Wooster, OH 44691

Abstract

Florida beggarweed is native to the Western Hemisphere but is naturalized around the world. During the last century, the mechanization of agriculture has transitioned Florida beggarweed from an important forage component to a weed of significance in the coastal plain of the southeast United States. This herbaceous annual is naturalized and found in fields and disturbed areas throughout the southern United States. The characteristics that made Florida beggarweed a good forage crop also make it a formidable weed. This review describes the importance of Florida beggarweed as a weed in the southern United States and the taxonomy of this species and details the distribution throughout the world and within the United States. The ecology of Florida beggarweed and its interactions with crop plants, insects, nematodes, and plant pathogens also are summarized. Finally, management of Florida beggarweed in agricultural systems using cultural practices and herbicides is reviewed.

Type
Invited Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Beach, R. M. and Todd, J. W. 1988. Comparitive consumption and utilization of Florida beggarweed and two soybean genotypes by Pseudoplusia includens larvae (Lepidoptera: Noctuidae). J. Econ. Entomol 23:97104.Google Scholar
Bennett, A. C. 2003a. WebHADSS TM: North Carolina Corn Database. http://www.webhadss.ncsu.edu/Locationintro.asp?location=north+Carolina.Google Scholar
Bennett, A. C. 2003b. WebHADSS TM: North Carolina Soybean Database. http://www.webhadss.ncsu.edu/Locationintro.asp?location=north+Carolina.Google Scholar
Bennett, A. C., Price, A. J., Sturgill, M. C., Buol, G. S., and Wilkerson, G. G. 2003. HADSSTM, Pocket HERBTM, and WebHADSSTM: decision aids for field crops. Weed Technol. 17:412420.Google Scholar
Bock, K. R., Guthrie, E. J., and Meredith, G. 1977. Clitoria yellow vein virus, a tymovirus from Kenya. Ann. Appl. Biol 85:97.Google Scholar
Bogdon, A. V. 1977. Tropical Pasture and Fodder Plants (Grasses and Legumes). London: Longman. Pp. 349350.Google Scholar
Branch, W. D. 1993. Peanut research. Page 353 in Bass, M. H. ed. The UGA Coastal Plain Experiment Station … the First 75 Years. Tifton, GA: Lang.Google Scholar
Bridges, D. C. ed. 1992. Crop Losses Due to Weeds in the United States—1992. Champaign, IL: Weed Science Society of America. 403 p.Google Scholar
Britton, N. L. and Millspaugh, C. F. 1920. The Bahama Flora. New York: Published by the authors. 695 p.Google Scholar
Brooks, T. L. 1955. Additional hosts of the burrowing nematode in Florida. Plant Dis. Rep 39:309.Google Scholar
Brown, S. M. and Cardina, J. 1992. Weed Facts: Florida Beggarweed. Tifton, GA: University Cooperative Extension Service. 4 p.Google Scholar
Brunt, A. A., Crabtree, K., Dallwitz, M. J., Gibbs, A. J., Watson, L., and Zurcher, E. J. 1999. Plant Viruses Online: Descriptions and Lists from the VIDE Database. http://biology.anu.edu.au/Groups/MES/vide/.Google Scholar
Buchanan, G. A. 1974. Weed survey—southern states. South. Weed Sci. Soc. Res. Rep 27:215249.Google Scholar
Buchanan, G. A., Hauser, E. W., Ethridge, W. J., and Cecil, S. R. 1976. Competition of Florida beggarweed and sicklepod with peanuts II. Effects of cultivation, weeds, and SADH. Weed Sci 24:2939.Google Scholar
Buchanan, G. A., Hoveland, C. S., and Harris, M. C. 1975. Response of weeds to soil pH. Weed Sci 23:473477.Google Scholar
Buchanan, G. A., Murray, D. S., and Hauser, E. W. 1982. Weeds and their control in peanuts. Pages 209242 in Pattee, H. E. and Young, C. T. eds. Peanut Science and Technology. Yoakum, TX: American Peanut Research Education Society.Google Scholar
Cardina, J. and Brecke, B. J. 1989. Growth and development of Florida beggarweed (Desmodium tortuosum) selections. Weed Sci 37:207210.Google Scholar
Cardina, J. and Brecke, B. J. 1991. Florida beggarweed (Desmodium tortuosum) growth and development in peanuts (Arachis hypogaea). Weed Technol 5:147153.Google Scholar
Cardina, J. and Hook, J. E. 1989. Factors influencing germination and emergence of Florida beggarweed (Desmodium tortuosum). Weed Technol 3:402407.Google Scholar
Cardina, J., Littrell, R. H., and Hanlin, R. T. 1988. Anthracnose of Florida beggarweed (Desmodium tortuosum) caused by Colletotrichum truncatum . Weed Sci 36:329334.Google Scholar
Carlton, B. and Jackson, J. 2001. Selected Practices and Plantings for Wildlife. www.forestry.uga.edu/warnell/service/library/bo733/node1.html.Google Scholar
Corlett, R. T. 1992. The naturalized flora of Hong Kong: a comparison with Singapore. J. Biogeogr 19:421430.CrossRefGoogle Scholar
Dale, J. L., Gibbs, A. J., and Behncken, G. M. 1984. Cassia yellow blotch virus—a new bromovirus from an Australian native legume, Cassia pleurocarpa . J. Gen. Virol 65:281288.CrossRefGoogle Scholar
Douglas, B. J., Thomas, A. G., and Derksen, D. A. 1990. Downy brome (Bromus tectorum) invasion into southwestern Saskatchewan. Can. J. Plant Sci 70:11431151.CrossRefGoogle Scholar
Dowler, C. C. 1998. Weed survey—southern states—broadleaf crops subsection. Proc. South. Weed Sci. Soc 51:299313.Google Scholar
Duncan, W. H. and Kartesz, J. T. 1981. Vascular Flora of Georgia. Athens, GA: University of Georgia Press. 143 p.Google Scholar
Egley, G. H. and Chandler, J. M. 1978. Germination and viability of weed seeds after 2.5 years in a 50-year buried seed study. Weed Sci 26:230238.Google Scholar
Egley, G. H. and Chandler, J. M. 1983. Longevity of weed seeds after 5.5 years in the Stoneville 50-year buried-seed study. Weed Sci 31:264270.Google Scholar
Elmore, C. D. 1983. Weed survey: analysis and summary. South. Weed Sci. Soc. Res. Rep 36:182184.Google Scholar
Elmore, C. D. 1989. Weed survey—southern states, broadleaf crop subsection. Proc. South. Weed Sci. Soc 42:416418.Google Scholar
Fawcett, W. and Rendle, A. B. 1920. Flora of Jamaica. London: British Museum. 368 p.Google Scholar
Forcella, F. 1985. Final distribution is related to rate of spread in alien weeds. Weed Res 25:181191.Google Scholar
Grey, T. L., Bridges, D. C., and Eastin, E. F. 2001. Influence of application rate and timing of diclosulam on weed control in peanut (Arachis hypogaea L). Peanut Sci 28:1319.Google Scholar
Grey, T. L., Bridges, D. C., Eastin, E. F., and MacDonald, G. E. 2002. Influence of flumioxazin rate and herbicide combinations on weed control in peanut (Arachis hypogaea L). Peanut Sci 29:2429.Google Scholar
Griffin, B. S., Shilling, D. G., Bennett, J. M., and Currey, W. L. 1989. The influence of water stress on the physiology and competition of soybean (Glycine max) and Florida beggarweed (Desmodium tortuosum). Weed Sci 37:544551.Google Scholar
Grisebach, A. H. 1864. Flora of the British West Indian Islands. London: Lovell Reeve. 784 p.Google Scholar
Hatch, S. L., Gandihi, K., and Brown, L. E. 1990. Checklist of the Vascular Plants of Texas. Texas Agricultural Experiment Station MP-1655. Pp. 1158.Google Scholar
Hauser, E. W. and Buchanan, G. A. 1974. Control of Florida beggarweed and sicklepod in peanuts with dinoseb. Peanut Sci 1:4044.CrossRefGoogle Scholar
Hauser, E. W. and Buchanan, G. A. 1978. Progress report: control of broadleaf weeds in peanuts with the recirculating spray technique. Proc. South. Weed Sci. Soc 31:330.Google Scholar
Hauser, E. W. and Buchanan, G. A. 1982. Production of Peanuts as Affected by Weed Competition and Row Spacing. Alabama Agricultural Experiment Station Auburn University Bull. 538. 35 p.Google Scholar
Hauser, E. W., Buchanan, G. A., Nichols, R. L., and Patterson, R. M. 1982. Effects of Florida beggarweed (Desmodium tortuosum) and sicklepod (Cassia obtusifolia) on peanut (Arachis hypogaea) yield. Weed Sci 30:602604.CrossRefGoogle Scholar
Hauser, E. W., Cecil, S. R., and Dowler, C. C. 1973. Systems of weed control for peanuts. Weed Sci 21:176180.Google Scholar
Hicks, T. V., Wehtje, G. R., and Grey, T. L. 1998. The interaction of pyridate and 2,4-DB in peanut (Arachis hypogaea), Florida beggarweed (Desmodium tortuosum), and sicklepod (Senna obtusifolia). Weed Sci 46:284288.Google Scholar
Hicks, T. V., Wehtje, G. R., and Wilcut, J. W. 1990. Weed control in peanuts (Arachis hypogaea) with pyridate. Weed Technol 4:493495.CrossRefGoogle Scholar
Holdeman, Q. L. and Graham, T. W. 1953. The effect of different plant species on the population trends of the sting nematode. Plant Dis. Rep 37:497500.Google Scholar
Hooper, J. R. 1978. Studies on the Germination and Emergence of Florida Beggarweed (Desmodium tortuosum SW) and Its Competition with Soybean [Glycine max (L.) Merr.] and Peanut (Arachis hypogaea L). Gainesville, FL: Department of Agronomy, University of Florida. 127 p.Google Scholar
Hume, H. H. 1907. Beggarweed. in Bailey, L. H., ed. Cyclopedia of American Agriculture, II Crops. New York: Macmillan. Pp. 214215.Google Scholar
[ILDIS] International Legume Database Information Service. 2001. Legume Web. http://biodiversity.sotcon.ac.uk/LegumeWeb?genus=Desmodium&species=purpureum.Google Scholar
Jackson, D. M. and Mitchell, E. R. 1984. Growth and survival of tobacco budworm (Lepidoptera: Noctuidae) larvae fed Florida beggarweed (Fabaceae) and tobacco (Solanaceae). J. Econ. Entomol 77:960965.CrossRefGoogle Scholar
Jackson, D. M., Tingle, F. C., and Mitchell, E. R. 1984. Survey of Heliothis spp. larvae found on Florida beggarweed and post-harvest tobacco in Florida. Fla. Entomol 67:130141.Google Scholar
Johnson, W. C. III, Colvin, D. L., Littlefield, T. A., and Mullinix, B. G. Jr. 1999. Florida beggarweed (Desmodium tortuosum) and sicklepod (Senna obtusifolia) control in peanut using herbicides applied through a wick-bar. Peanut Sci 26:1823.Google Scholar
Johnson, W. C. III, Holbrook, C. C., Mullinix, B. G. J., and Cardina, J. 1992. Response of eight genetically diverse peanut genotypes to chlorimuron. Peanut Sci. 19:111115.Google Scholar
Johnson, W. C. III and Mullinix, B. G. Jr. 1995. Weed management in peanut using stale seedbed techniques. Weed Sci 43:293297.CrossRefGoogle Scholar
Johnson, W. C. III, Todd, J. W., Culbreath, A. K., and Mullinix, B. G. Jr. 1996. Role of warm-season weeds in spotted wilt epidemiology in the southeastern coastal plain. Agron. J 88:928933.Google Scholar
Kretschmer, A. E. Jr., Brolmann, J. B., Snyder, G. H., and Coleman, S. W. 1979. ‘Florida’ Carpon Desmodium, a Perennial Tropical Legume for Use in South Florida. Florida Agricultural Experiment Station Bull. S-260. Pp. 112.Google Scholar
Leach, C. F. 1924. Beggarweed. Suppl. Fla. Q. Bull. Dept. Agric. 34:124.Google Scholar
MacBride, J. F. 1943. Flora of Peru. Field Museum of Natural History 13, part III, No. 1, Publ. No. 531. 507 p.Google Scholar
MacRoberts, D. T. 1988. A Documented Checklist and Atlas of the Vascular Flora of Louisiana. Shreveport, LA: Louisiana State University Press. 756 p.Google Scholar
Mariano, R. L. R. and McCarter, S. M. 1993. Epiphytic survival of Pseudomonas viridiflava on tomato and selected weed species. Microb. Ecol 26:4758.CrossRefGoogle ScholarPubMed
Mayo, N. 1924. Beggarweed (Cherokee clover). Suppl. Fla. Q. Bull. Dept. Agric 31:124.Google Scholar
Monks, C. D., Patterson, M. G., Wilcut, J. W., and Delaney, D. P. 1999. Effect of pyrithiobac, MSMA, and DSMA on cotton (Gossypium hirsutum L.) growth and weed control. Weed Technol 13:611.Google Scholar
Mundy, H. G. 1921. Florida beggar weed. Rhod. Agric. J 18:504506.Google Scholar
O'Bannon, J. H. 1977. Worldwide distribution of Radopholus similis and its importance in crop production. J. Nematol 9:1625.Google Scholar
Padgett, G. B., Brenneman, T. B., and El-Ghol, N. E. 1995. First report of Cylindrocladium black rot (C. parasiticum) on Florida beggarweed. Plant Dis. 79:539.Google Scholar
Paulsgrove, M. D. and Wilcut, J. W. 1999. Weed management in bromoxynil-resistant Gossypium hirsutum. Weed Sci 47:596601.Google Scholar
Pickell, J. M. 1890. Some Florida weeds and grasses as feeding stuffs. The beggarweed. Florida Agricultural Experiment Station Bull 11:1516.Google Scholar
Piper, C. V. 1921. Forage plants and their culture. New York: Macmillan. 618 p.Google Scholar
Prostko, E. P., Kemerait, R. C., Johnson, W. C. III, Brecke, B. J., and Brown, S. N. 2002. The influence of Classic on tomato spotted wilt virus of peanut. Proc. Am. Peanut Res. Educ. Soc 34:99100.Google Scholar
Prostko, E. P., Webster, T. M., Bridges, D. C., and Murphy, T. R. 2003. WebHADSS TM: Georgia Peanut Database. http://www.webhadss.ncsu.edu/Locationintro.asp?location=Georgia.Google Scholar
Radford, A. E., Ahles, H. E., and Bell, C. R. 1968. Manual of the Vascular Flora of the Carolinas. Chapel Hill: The University of North Carolina Press. 1183 p.Google Scholar
Richburg, J. S., Wilcut, J. W., Colvin, D. L., and Wiley, G. R. 1996. Weed management in southeastern peanut (Arachis hypogaea) with AC 263,222. Weed Technol 10:145152.Google Scholar
Richburg, J. S., Wilcut, J. W., and Wiley, G. L. 1995. AC 263,222 and imazethapyr rates and mixtures for weed management peanut (Arachis hypogaea). Weed Technol 9:801806.Google Scholar
Rotar, P. P. and Urata, U. 1967. Cytological studies in the genus Desmodium; some chromosome counts. Am. J. Bot 54:14.Google Scholar
Royal, S. S., Brecke, B. J., Shokes, F. M., and Colvin, D. L. 1997. Influence of broadleaf weeds on chlorothalonil deposition, foliar disease incidence, and peanut (Arachis hypogaea) yield. Weed Technol 11:5158.CrossRefGoogle Scholar
Schubert, B. G. 1940. Desmodium: preliminary studies—I. Contrib. Gray Herb. Harv. Univ 129:331.Google Scholar
Schubert, B. G. 1950. Desmodium: preliminary studies—III. Rhodora 52:135155.Google Scholar
Schubert, B. G. 1980. Desmodium . Ann. Mo. Bot. Gard 67:658660.Google Scholar
Scott, G. H., Askew, S. D., Bennett, A. C., and Wilcut, J. W. 2001. Economic evaluation of HADSS computer program for weed management in nontransgenic and transgenic cotton. Weed Sci. 49:549557.Google Scholar
Sharma, S. D. and Singh, M. 2001. Environmental factors affecting absorption and bio-efficacy of glyphosate in Florida beggarweed (Desmodium tortuosum). Crop Prot 20:511516.Google Scholar
Skerman, P. J. and Riveros, F. 1977. Tropical Forage Legumes. Rome: FAO. Pp. 502503.Google Scholar
Small, J. K. 1913. Flora of the Southwestern United States. New York: Published by author. 1394 p.Google Scholar
Smith, J. G. 1899. Florida beggar weed (also known as beggar weed, florida clover, giant beggar weed). U.S. Dept. Agric. Circ 13:115.Google Scholar
Smith, J. G. 1900. Fodder and Forage Plants: Exclusive of Grasses. U.S. Dept. Agric. Circ. Div. Agrostol. Bull 2:26.Google Scholar
Snow, J. W. and Burton, R. L. 1967. Seasonal occurrence of the Heliothis complex on Desmodium purpureum with observations on parasitism by Cardiochiles nigriceps . J. Ga. Entomol. Soc. 2:4752.Google Scholar
Stokes, W. E., Barnette, R. M., and Hester, J. B. 1936. Effects of Summer Cover Crops on Crop Yields and on the Soil. Florida Agricultural Experiment Station Bull. 301. 21 p.Google Scholar
Standley, P. C. and Steyermark, J. A. 1946. Flora of Guatemala. Fieldiana: Botany, Vol. 24, part V. Chicago Natural History Museum. 499 p.Google Scholar
Thorne, R. F. 1954. The vascular plants of southwestern Georgia. Am. Midl. Nat 52:257327.Google Scholar
Tracy, S. M. 1898. A Report from the Forage Plants and Forage Resources of the Gulf States. U.S. Dept. Agric. Div. Agrostol. Bull 15:4546.Google Scholar
Tugwell, P., Rouse, E. P., and Thompson, R. G. 1973. Insects in Soybeans and a Weed Host (Desmodium sp). Ark. Agric. Exp. Stn. Rep. Ser 214:113.Google Scholar
[USDA-ARS] U.S. Department of Agriculture, Agricultural Research Service. 2001. National Genetic Resources Program. Germplasm: Resources Information Network—(GRIN). www.ars-grin.gov/cgi-bin/npgs/html/splist.pl?3530.Google Scholar
Vail, A. M. 1892. A preliminary list of the species of the genus Meibomia Heist., occurring in the United States and British America. Bull. Torrey Bot. Club 19:107118.Google Scholar
Vencill, W. K. 2002. Herbicide Handbook. 8th ed. Lawrence, KS: Weed Science Society of America. 493 p.Google Scholar
Walters, H. J. 1964. Transmission of bean pod mottle virus by leaf bean beetles. Phytopathology 54:240.Google Scholar
Walters, H. J. and Scott, H. A. 1968. A virus isolate from Desmodium related to turnip yellow mosaic. Phytopathology 58:1071.Google Scholar
Walters, H. J. and Scott, H. A. 1972. Host range and some properties of Desmodium yellow mottle virus. Phytopathology 62:125.Google Scholar
Webster, T. M. 2000. Weed survey—southern states: grass crops subsection. Proc. South. Weed Sci. Soc 53:247274.Google Scholar
Webster, T. M. 2001. Weed survey—southern states: broadleaf crops subsection. Proc. South. Weed Sci. Soc 54:244259.Google Scholar
Webster, T. M. and Coble, H. D. 1997. Changes in the weed species composition of the southern United States: 1974 to 1995. Weed Technol 11:308317.Google Scholar
Webster, T. M. and Culpepper, A. S. 2002. WebHADSS TM: Georgia Cotton Database. http://cropserv3.cropsci.ncsu.edu/webhadss/HerbicidePrices.asp?Location=Georgia&Crop=Cotton.Google Scholar
Webster, T. M. and MacDonald, G. E. 2001. A survey of weeds in various crops in Georgia. Weed Technol 15:771790.Google Scholar
Webster, T. M., Wilcut, J. W., and Coble, H. D. 1997. Influence of AC 263,222 rate and application method on weed management in peanut (Arachis hypogaea). Weed Technol 11:520526.Google Scholar
Wehtje, G., Brecke, B. J., and Martin, N. R. 2000. Performance and economic benefit of herbicides used for broadleaf weed control in peanut. Peanut Sci 27:1116.Google Scholar
Wehtje, G., Wilcut, J. W., and McGuire, J. A. 1992. Influence of bentazon on the phytotoxicity of paraquat to peanuts (Arachis hypogaea) and associated weeds. Weed Sci 40:9095.Google Scholar
Wells, H. D. and Forbes, I. Jr. 1963. Anthracnose of Desmodium in Georgia. Plant Dis. Rep 47:837839.Google Scholar
Whyte, R. O., Nilsson-Leissner, G., and Trumble, H. C. 1953. Legumes in agriculture. FAO Agric. Stud 21:271, 360–361.Google Scholar
Wilcut, J. W., Richburg, J. S., Eastin, E. F., Wiley, G. R., Walls, F. R., and Newell, S. 1994a. Imazethapyr and paraquat systems for weed management in peanut (Arachis hypogaea). Weed Sci 42:601607.CrossRefGoogle Scholar
Wilcut, J. W., Richburg, J. S., Wiley, G. L., and Walls, F. R. 1996. Postemergence AC 263,222 systems for weed control in peanut (Arachis hypogaea). Weed Sci 44:615621.Google Scholar
Wilcut, J. W., Richburg, J. S. III, Wiley, G., Walls, R. F. Jr., Jones, S. R., and Iverson, M. J. 1994b. Imidazolinone herbicide systems for peanut (Arachis hypogaea L). Peanut Sci 21:2328.Google Scholar
Wilcut, J. W., York, A. C., and Wehtje, G. R. 1994c. The control and interaction of weeds in peanut (Arachis hypogaea). Rev. Weed Sci 6:177205.Google Scholar
Wilkerson, G. G., Modena, S. A., and Coble, H. D. 1991. Herb—decision-model for postemergence weed-control in soybean. Agron. J 83:413417.Google Scholar
Wulff, R. D. 1985. Effect of seed size on heteroblastic development in seedlings of Desmodium paniculatum . Am J. Bot 72:16841686.Google Scholar
Younge, O. R., Plucknett, D. L., and Rotar, P. P. 1964. Culture and Yield Performance of Desmodium intortum and D. canum in Hawaii. No. 59. Honolulu, HI: Hawaii Agricultural Experiment Station, University of Hawaii. 28 p.Google Scholar