Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T21:27:25.109Z Has data issue: false hasContentIssue false

Rapid Identification and Molecular Characterization of Phytoene Desaturase Mutations in Fluridone-Resistant Hydrilla (Hydrilla verticillata)

Published online by Cambridge University Press:  20 January 2017

Lori K. Benoit*
Affiliation:
Department of Ecology and Evolutionary Biology, University of Connecticut, 75 N. Eagleville Rd, Unit 3043, Storrs, CT 06269
Donald H. Les
Affiliation:
Department of Ecology and Evolutionary Biology, University of Connecticut, 75 N. Eagleville Rd, Unit 3043, Storrs, CT 06269
*
Corresponding author's Email: [email protected]

Abstract

Florida hydrilla populations have shown an alarming increase in resistance to fluridone, an herbicide used extensively for controlling invasive US hydrilla populations. A rapid PCR and sequencing method was developed to identify and screen hydrilla genomic DNA for three previously identified phytoene desaturase (pds) gene mutations that confer resistance to fluridone. Ninety hydrilla accessions were screened for fluridone resistant genotypes including 46 accessions from the US and 44 accessions from 15 other countries. In Florida, hydrilla from five of nine sites tested was heterozygous for wild-type and herbicide-resistant alleles. Additionally, a new resistant population was identified from Lake Seminole in Georgia, the first genetically confirmed strain of resistant hydrilla outside of Florida. All resistance-conferring mutations were located on the same homologous haplotype of US dioecious hydrilla. All other hydrilla samples tested possessed only wild type alleles, including monoecious strains that had been exposed to fluridone. Management implications are discussed.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Arias, R. S., Netherland, M. D., Scheffler, B. E., Puri, A., and Dayan, F. E. 2005. Molecular evolution of herbicide resistance to phytoene desaturase inhibitors in Hydrilla verticillata and its potential use to generate herbicide-resistant crops. Pest. Manag. Sci. 61:258268.Google Scholar
Asplund, T. 2007. Hydrilla in Wisconsin. Aquatic Plant News. 86:6.Google Scholar
Bartley, G. E., Viitanen, P. V., Pecker, I., Chamovitz, D., Hirschberg, J., and Scolnik, P. A. 1991. Molecular cloning and expression in photosynthetic bacteria of a soybean cDNA coding for phytoene desaturase, an enzyme of the carotenoid biosynthesis pathway. Proc. Natl. Acad. Sci. U. S. A. 88:65326536.Google Scholar
Beckie, H. J. 2006. Herbicide-resistant weeds: Management tactics and practices. Weed Tech. 20:793814.Google Scholar
Benoit, L. K. 2011. Cryptic speciation, genetic diversity and herbicide resistance in the invasive aquatic plant Hydrilla verticillata (L.f.) Royle (Hydrocharitaceae). PhD dissertation, Storrs, CT University of Connecticut. 117 p.Google Scholar
Brooker, M. P. and Edwards, R. W. 1975. Aquatic herbicides and the control of water weeds. Water Res. 9:115.Google Scholar
Chamovitz, D., Sandmann, G., and Hirschberg, J. 1993. Molecular and biochemical characterization of herbicide-resistant mutants of cyanobacteria reveals that phytoene desaturation is a rate-limiting step in carotenoids biosynthesis. J. Biol. Chem. 268:1734817353.Google Scholar
Cook, C. D. K. and Luond, R. 1982. A revision of the genus Hydrilla (Hydrocharitaceae). Aquat. Bot. 13:485504.Google Scholar
Darmency, H. and Gasquez, J. 1990. Fate of herbicide resistance genes in weeds. Pages 354363 in Green, M., Moberg, W., and LeBaron, H., eds. Managing Resistance to Agrochemicals. Washington, DC American Chemical Society.Google Scholar
Dayan, F. E. and Netherland, M. D. 2005. Hydrilla, the perfect aquatic weed, becomes more noxious than ever. Outlooks Pest Man. 16:277282.Google Scholar
Délye, C., Michel, S., Bérard, A., Chauvel, B., Brunel, D., Guillemin, J-P., Dessaint, F., and Le Corre, V. 2010. Geographical variation in resistance to acetyl-coenzyme A carboxylase-inhibiting herbicides across the range of the arable weed Alopecurus myosuroides (black grass). New Phytol. 186:10051017.Google Scholar
Diggle, A. J. and Neve, P. 1998. The population dynamics and genetics of herbicide resistance – a modeling approach. Pages 6199 in Powles, S. and Shaner, D., eds. Herbicide Resistance and World Grains. Boca Raton, FL CRC.Google Scholar
Doong, R. L., MacDonald, G. E., and Shilling, D. G. 1993. Effect of fluridone on chlorophyll, carotenoids and anthocyanin content of hydrilla. J. Aquat. Plant Manage. 31:5559.Google Scholar
Doyle, J. J. and Doyle, J. L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19:1115.Google Scholar
EDDMapS. 2012. Early Detection & Distribution Mapping System. The University of Georgia - Center for Invasive Species and Ecosystem Health. Available online at http://www.eddmaps.org/; last Accessed August 6, 2012.Google Scholar
Fox, A. M., Haller, W. T., and Shilling, D. G. 1994. Use of fluridone for hydrilla management in the Withlacoochee River, Florida. J. Aquat. Plant Manage. 32:4755.Google Scholar
Hamelink, J. L., Buckler, D. R., Mayer, F. L., Palawski, D. U., and Sanders, H. O. 1986. Toxicity of fluridone to aquatic invertebrates and fish. Environ. Toxicol. Chem. 5:8794.Google Scholar
Heap, I. 2012. The International survey of herbicide resistant weeds. http://www.weedscience.com. Accessed August 7, 2012.Google Scholar
Hoyer, M. V., Netherland, M. D., Allen, M. S., and Canfield, D. E. Jr. 2005. Hydrilla management in Florida: A summary and discussion of issues identified by professionals with future management recommendations. http://plants.ifas.ufl.edu/osceola/hydrilla_mngmt_fl/hydrilla_management_florida.html. Accessed May 22, 2012.Google Scholar
Jasieniuk, M., Brûlé-Babel, A. L., and Morrison, I. N. 1996. The evolution and genetics of herbicide resistance in weeds. Weed Sci. 44:176193.Google Scholar
Keohavong, P. and Thilly, W. G. 1989. Fidelity of DNA polymerases in DNA amplification. Proc. Natl. Acad. Sci. USA. 86:92539257.Google Scholar
Koschnick, T. J., Haller, W. T., and Netherland, M. D. 2006. Aquatic plant resistance to herbicides. Aquatics 28:49.Google Scholar
Kovalchuk, I., Kovalchuk, O., and Hohn, B. 2000. Genome-wide variation of the somatic mutation frequency in transgenic plants. EMBO J. 19:44324438.Google Scholar
Les, D. H., Mehrhoff, L. J., Cleland, M. A., and Gabel, J. D. 1997. Hydrilla verticillata (Hydrocharitaceae) in Connecticut. J. Aquat. Plant Manage. 35:1014.Google Scholar
Maddison, D. R. and Maddison, W. P. 2000. MacClade 4: Analysis of phylogeny and character evolution. Sinauer, Sunderland, MA. 492 p.Google Scholar
Madeira, P. T., Jacono, C. C., and Van, T. K. 2000. Monitoring hydrilla using two RAPD procedures and the nonindigenous aquatic species database. J. Aquat. Plant Manage. 38:3340.Google Scholar
Madeira, P. T., Van, T. K., and Center, T. D. 2004. An improved molecular tool for distinguishing monoecious and dioecious hydrilla. J. Aquat. Plant Manage. 42:2832.Google Scholar
Michel, A., Arias, R. S., Scheffler, B. E., Duke, S. O., Netherland, M., and Dayan, F. E. 2004. Somatic mutation-mediated evolution of herbicide resistance in the nonindigenous invasive plant hydrilla (Hydrilla verticillata). Mol. Ecol. 13:32293237.Google Scholar
Murphy, K. J. 1988. Aquatic weed problems and their management: a review I. The worldwide scale of the aquatic weed problem. Crop Prot. 7:232248.Google Scholar
Netherland, M. D., Getsinger, K. D., and Skogerboe, J. D. 1997. Mesocosm evaluation of the selective potential of fluridone. J. Aquat. Plant Manage. 35:4150.Google Scholar
Pons, L. 2005. Pegging a troublesome change in hydrilla. Agric. Res. 53:1416.Google Scholar
Puri, A., MacDonald, G. E., Singh, M., and Haller, W. T. 2006. Phytoene and β-carotene response of fluridone-susceptible and -resistant hydrilla (Hydrilla verticillata) biotypes to fluridone. Weed Sci. 54:995999.Google Scholar
Puri, A., MacDonald, G. E., Altpeter, F., and Haller, W. T. 2007. Mutations in phytoene desaturase gene in fluridone-resistant Hydrilla (Hydrilla verticillata) biotypes in Florida. Weed Sci. 55:412420.Google Scholar
Rogstad, S. H. 1992. Saturated NaCl-CTAB solution as a means of field preservation of leaves for DNA analyses. Taxon 41:701708.Google Scholar
Saari, L. L., Cotterman, J. C., and Thill, D. C. 1994. Resistance to acetolactase synthase inhibiting herbicides. Pages 83140 in Powles, S. B. and Holtum, J. A. M., eds. Herbicide Resistance in Plants: Biology and Biochemistry. Boca Raton, FL Lewis.Google Scholar
Shivrain, V. K., Burgos, N. R., Sales, M. A., and Kuk, Y. I. 2010. Polymorphisms in the ALS gene of weedy rice (Oryza sativa L.) accessions with different tolerance to imazethapyr. Crop Prot. 29:336341.Google Scholar
Speksnijder, A. G. C. L., Kowalchuk, G. A., De Jong, S., Kline, E., Stephen, J. R., and Laanbroek, H. J. 2001. Microvariation artifacts introduced by PCR and cloning of closely related 16S rRNA gene sequences. Appl. Environ. Microbiol. 67:469472.Google Scholar
Steward, K. K., Van, T. K., Carter, V., and Pieterse, A. H. 1984. Hydrilla invades Washington, D.C. and the Potomac. Amer. J. Bot. 1971:162163.Google Scholar
Swofford, D. L. 2002. PAUP*, Phylogenetic Analysis Using Parsimony (*and other methods), version 4.0. Sunderland, MA Sinauer. 142 p.Google Scholar
Vaillant, I. and Paszkowski, J. 2007. Role of histone and DNA methylation in gene regulation. Curr. Opin. Plant Biol. 10 528533.Google Scholar