Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T22:27:30.426Z Has data issue: false hasContentIssue false

Physiological Mechanisms in the Synergism between Thifensulfuron and Imazethapyr in Sulfonylurea-Tolerant Soybean (Glycine max)

Published online by Cambridge University Press:  12 June 2017

David M. Simpson
Affiliation:
Dep. Agron., Univ. Illinois, and Plant Physiol., USDA-ARS, 1102 South Goodwin Ave., Urbana, IL 61801
E. W. Stoller
Affiliation:
Dep. Agron., Univ. Illinois, and Plant Physiol., USDA-ARS, 1102 South Goodwin Ave., Urbana, IL 61801

Abstract

Greenhouse and laboratory experiments were conducted to determine if the synergistic interaction between imazethapyr and thifensulfuron in sulfonylurea-tolerant (STS) soybean involved enhanced absorption and translocation or reduced metabolism of one or both herbicides. Thifensulfuron at 4.4 g ha−1 and imazethapyr at 70 g ha−1 caused 0 and 28% injury to STS soybean 7 DAT, respectively, while the combination of both herbicides caused 50% injury 7 DAT. Imazethapyr had no effect on absorption of 14C-thifensulfuron into the first trifoliolate. Imazethapyr did not affect absorption, translocation, or metabolism of 14C-thifensulfuron. Metabolism of 14C-thifensulfuron was rapid, with less than 10% remaining after 24 h, and was not affected by imazethapyr. Likewise, thifensulfuron did not affect the absorption, translocation, or metabolism of 14C-imazethapyr. Therefore, the synergism between thifensulfuron and imazethapyr does not involve changes in the absorption, translocation, or metabolism of either herbicide.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © 1996 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Ahrens, W. H. 1990. Enhancement of soybean (Glycine max) injury and weed control by thifensulfuron-insecticide mixtures. Weed Technol. 4: 524528.CrossRefGoogle Scholar
2. Anonymous. Pinnacle Product Label. DuPont Co. Wilmington, DE 1989.Google Scholar
3. Anonymous. Pursuit Product Label. American Cyanamid Co., Wayne, NJ 07470.Google Scholar
4. Beckett, T. H. and Stoller, E. W. 1991. Effects of methylammonium and urea ammonium nitrate on foliar uptake of thifensulfuron in velvetleaf (Abutilon theophrasti). Weed Sci. 39: 333338.Google Scholar
5. Beyer, E. M., Duffy, M. J., Hay, J. V., and Schlueter, D. D. 1988. Sulfonylureas. Pages 117189 in Kearney, P.C. and Kaufman, D. D., eds. Herbicides: Chemistry, Degradation, and Mode of Action. Vol 3: Marcel-Dekker, New York.Google Scholar
6. Brown, H. M., Wittenbach, V. A., Forney, D. R., and Strachan, S. D. 1990. Basis for soybean tolerance to thifensulfuron methyl. Pestic. Biochem. Physiol. 37: 303313.CrossRefGoogle Scholar
7. Cole, T. A., Wehtje, G. R., Wilcut, J. W., and Hicks, T. V. 1989. Behavior of imazethapyr in soybeans (Glycine max), peanuts (Arachis hypogaea), and selected weeds. Weed Sci. 37: 639644.Google Scholar
8. Diehl, K. E., Stoller, E. W., and Barrett, M. 1995. In vivo and in vitro inhibition of nicosulfuron by terbufos in maize. Pestic. Biochem. Physiol. 51: 137149.Google Scholar
9. Fielding, R. J. and Stoller, E. W. 1990. Effects of additives on efficacy, uptake, and translocation of chlorimuron ethyl ester. Weed Technol. 4: 264271.Google Scholar
10. Frazier, T. L., Nissen, S. J., Mortensen, D. A., and Meinke, L. J. 1993. The influence of terbufos on primisulfuron absorption and fate in corn (Zea mays). Weed Sci. 41::664668.CrossRefGoogle Scholar
11. Green, J. M. and Bailey, S. P. 1987. Herbicide interactions with herbicides and other agricultural chemicals. Pages 3761 in McWhorter, C. G. and Gebhardt, M. R., eds. Methods of Applying Herbicides. Weed Science Society of America, Champaign, IL.Google Scholar
12. Hahn, K. L. and Hughes, M. R. 1993. Weed control options for “STS” soybeans. Proc. North Cent. Weed Sci. Soc. 48: 80.Google Scholar
13. Hatzios, K. K. and Penner, D. 1985. Interactions of herbicides with other agrochemicals in higher plants. Rev. Weed. Sci. 1: 163.Google Scholar
14. Kent, L. M., Wills, G. D., and Shaw, D. R. 1991. Influence of ammonium sulfate, imazapyr, temperature, and relative humidity on the absorption and translocation of imazethapyr. Weed Sci. 39: 412416.Google Scholar
15. Sebastian, S. A., Fader, G. M., Ulrieh, J. F., Forney, D. R., and Chaleff, R. S. 1989. Semidominant soybean mutation for resistance to sulfonylurea herbicides. Crop Sci. 29: 14031408.Google Scholar
16. Shaner, D. L. and Mallipudi, N. M. 1991. Mechanisms of selectivity of the imidazolinone herbicides. Pages 91102 in Shaner, D. L. and O'Conner, S. L., eds. The Imidazolonone Herbicides. CRC Press, Boca Raton, FL.Google Scholar
17. Van Ellis, M. R. and Shaner, D. L. 1988. Mechanism of cellular absorption of imidazolinones in soybean (Glycine max) leaf discs. Pestic. Sci. 23: 2534.Google Scholar
18. Wilcut, J. W., Wehtje, G. R., Patterson, M. G., Cole, T. A., and Hicks, T. V. 1989. Absorption, translocation, and metabolism of foliar-applied chlorimuron in soybeans (Glycine max), peanuts (Arachis hypogaea), and selected weeds. Weed Sci. 37: 175180.Google Scholar
19. Wilms, W. C. and Chicoine, T. K. 1992. Update on thifensulfuron treatments for postemergence use in soybeans. Proc. North Cent. Weed Sci. Soc. 47: 117.Google Scholar